Step |
Hyp |
Ref |
Expression |
1 |
|
measunl.1 |
|- ( ph -> M e. ( measures ` S ) ) |
2 |
|
measunl.2 |
|- ( ph -> A e. S ) |
3 |
|
measunl.3 |
|- ( ph -> B e. S ) |
4 |
|
undif1 |
|- ( ( A \ B ) u. B ) = ( A u. B ) |
5 |
4
|
fveq2i |
|- ( M ` ( ( A \ B ) u. B ) ) = ( M ` ( A u. B ) ) |
6 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
7 |
1 6
|
syl |
|- ( ph -> S e. U. ran sigAlgebra ) |
8 |
|
difelsiga |
|- ( ( S e. U. ran sigAlgebra /\ A e. S /\ B e. S ) -> ( A \ B ) e. S ) |
9 |
7 2 3 8
|
syl3anc |
|- ( ph -> ( A \ B ) e. S ) |
10 |
|
disjdifr |
|- ( ( A \ B ) i^i B ) = (/) |
11 |
10
|
a1i |
|- ( ph -> ( ( A \ B ) i^i B ) = (/) ) |
12 |
|
measun |
|- ( ( M e. ( measures ` S ) /\ ( ( A \ B ) e. S /\ B e. S ) /\ ( ( A \ B ) i^i B ) = (/) ) -> ( M ` ( ( A \ B ) u. B ) ) = ( ( M ` ( A \ B ) ) +e ( M ` B ) ) ) |
13 |
1 9 3 11 12
|
syl121anc |
|- ( ph -> ( M ` ( ( A \ B ) u. B ) ) = ( ( M ` ( A \ B ) ) +e ( M ` B ) ) ) |
14 |
5 13
|
eqtr3id |
|- ( ph -> ( M ` ( A u. B ) ) = ( ( M ` ( A \ B ) ) +e ( M ` B ) ) ) |
15 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
16 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( A \ B ) e. S ) -> ( M ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
17 |
1 9 16
|
syl2anc |
|- ( ph -> ( M ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
18 |
15 17
|
sselid |
|- ( ph -> ( M ` ( A \ B ) ) e. RR* ) |
19 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) ) |
20 |
1 2 19
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |
21 |
15 20
|
sselid |
|- ( ph -> ( M ` A ) e. RR* ) |
22 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ B e. S ) -> ( M ` B ) e. ( 0 [,] +oo ) ) |
23 |
1 3 22
|
syl2anc |
|- ( ph -> ( M ` B ) e. ( 0 [,] +oo ) ) |
24 |
15 23
|
sselid |
|- ( ph -> ( M ` B ) e. RR* ) |
25 |
|
inelsiga |
|- ( ( S e. U. ran sigAlgebra /\ A e. S /\ B e. S ) -> ( A i^i B ) e. S ) |
26 |
7 2 3 25
|
syl3anc |
|- ( ph -> ( A i^i B ) e. S ) |
27 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( A i^i B ) e. S ) -> ( M ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
28 |
1 26 27
|
syl2anc |
|- ( ph -> ( M ` ( A i^i B ) ) e. ( 0 [,] +oo ) ) |
29 |
|
elxrge0 |
|- ( ( M ` ( A i^i B ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( A i^i B ) ) e. RR* /\ 0 <_ ( M ` ( A i^i B ) ) ) ) |
30 |
28 29
|
sylib |
|- ( ph -> ( ( M ` ( A i^i B ) ) e. RR* /\ 0 <_ ( M ` ( A i^i B ) ) ) ) |
31 |
30
|
simprd |
|- ( ph -> 0 <_ ( M ` ( A i^i B ) ) ) |
32 |
15 28
|
sselid |
|- ( ph -> ( M ` ( A i^i B ) ) e. RR* ) |
33 |
|
xraddge02 |
|- ( ( ( M ` ( A \ B ) ) e. RR* /\ ( M ` ( A i^i B ) ) e. RR* ) -> ( 0 <_ ( M ` ( A i^i B ) ) -> ( M ` ( A \ B ) ) <_ ( ( M ` ( A \ B ) ) +e ( M ` ( A i^i B ) ) ) ) ) |
34 |
18 32 33
|
syl2anc |
|- ( ph -> ( 0 <_ ( M ` ( A i^i B ) ) -> ( M ` ( A \ B ) ) <_ ( ( M ` ( A \ B ) ) +e ( M ` ( A i^i B ) ) ) ) ) |
35 |
31 34
|
mpd |
|- ( ph -> ( M ` ( A \ B ) ) <_ ( ( M ` ( A \ B ) ) +e ( M ` ( A i^i B ) ) ) ) |
36 |
|
uncom |
|- ( ( A i^i B ) u. ( A \ B ) ) = ( ( A \ B ) u. ( A i^i B ) ) |
37 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
38 |
36 37
|
eqtr3i |
|- ( ( A \ B ) u. ( A i^i B ) ) = A |
39 |
38
|
fveq2i |
|- ( M ` ( ( A \ B ) u. ( A i^i B ) ) ) = ( M ` A ) |
40 |
|
incom |
|- ( ( A i^i B ) i^i ( A \ B ) ) = ( ( A \ B ) i^i ( A i^i B ) ) |
41 |
|
inindif |
|- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
42 |
40 41
|
eqtr3i |
|- ( ( A \ B ) i^i ( A i^i B ) ) = (/) |
43 |
42
|
a1i |
|- ( ph -> ( ( A \ B ) i^i ( A i^i B ) ) = (/) ) |
44 |
|
measun |
|- ( ( M e. ( measures ` S ) /\ ( ( A \ B ) e. S /\ ( A i^i B ) e. S ) /\ ( ( A \ B ) i^i ( A i^i B ) ) = (/) ) -> ( M ` ( ( A \ B ) u. ( A i^i B ) ) ) = ( ( M ` ( A \ B ) ) +e ( M ` ( A i^i B ) ) ) ) |
45 |
1 9 26 43 44
|
syl121anc |
|- ( ph -> ( M ` ( ( A \ B ) u. ( A i^i B ) ) ) = ( ( M ` ( A \ B ) ) +e ( M ` ( A i^i B ) ) ) ) |
46 |
39 45
|
eqtr3id |
|- ( ph -> ( M ` A ) = ( ( M ` ( A \ B ) ) +e ( M ` ( A i^i B ) ) ) ) |
47 |
35 46
|
breqtrrd |
|- ( ph -> ( M ` ( A \ B ) ) <_ ( M ` A ) ) |
48 |
|
xleadd1a |
|- ( ( ( ( M ` ( A \ B ) ) e. RR* /\ ( M ` A ) e. RR* /\ ( M ` B ) e. RR* ) /\ ( M ` ( A \ B ) ) <_ ( M ` A ) ) -> ( ( M ` ( A \ B ) ) +e ( M ` B ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) |
49 |
18 21 24 47 48
|
syl31anc |
|- ( ph -> ( ( M ` ( A \ B ) ) +e ( M ` B ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) |
50 |
14 49
|
eqbrtrd |
|- ( ph -> ( M ` ( A u. B ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) |