Step |
Hyp |
Ref |
Expression |
1 |
|
measiuns.0 |
|- F/_ n B |
2 |
|
measiuns.1 |
|- ( n = k -> A = B ) |
3 |
|
measiuns.2 |
|- ( ph -> ( N = NN \/ N = ( 1 ..^ I ) ) ) |
4 |
|
measiuns.3 |
|- ( ph -> M e. ( measures ` S ) ) |
5 |
|
measiuns.4 |
|- ( ( ph /\ n e. N ) -> A e. S ) |
6 |
1 2 3
|
iundisjcnt |
|- ( ph -> U_ n e. N A = U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
7 |
6
|
fveq2d |
|- ( ph -> ( M ` U_ n e. N A ) = ( M ` U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) |
8 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
9 |
4 8
|
syl |
|- ( ph -> S e. U. ran sigAlgebra ) |
10 |
9
|
adantr |
|- ( ( ph /\ n e. N ) -> S e. U. ran sigAlgebra ) |
11 |
|
simpll |
|- ( ( ( ph /\ n e. N ) /\ k e. ( 1 ..^ n ) ) -> ph ) |
12 |
|
fzossnn |
|- ( 1 ..^ n ) C_ NN |
13 |
|
simpr |
|- ( ( ( ph /\ n e. N ) /\ N = NN ) -> N = NN ) |
14 |
12 13
|
sseqtrrid |
|- ( ( ( ph /\ n e. N ) /\ N = NN ) -> ( 1 ..^ n ) C_ N ) |
15 |
|
simplr |
|- ( ( ( ph /\ n e. N ) /\ N = ( 1 ..^ I ) ) -> n e. N ) |
16 |
|
simpr |
|- ( ( ( ph /\ n e. N ) /\ N = ( 1 ..^ I ) ) -> N = ( 1 ..^ I ) ) |
17 |
15 16
|
eleqtrd |
|- ( ( ( ph /\ n e. N ) /\ N = ( 1 ..^ I ) ) -> n e. ( 1 ..^ I ) ) |
18 |
|
elfzouz2 |
|- ( n e. ( 1 ..^ I ) -> I e. ( ZZ>= ` n ) ) |
19 |
|
fzoss2 |
|- ( I e. ( ZZ>= ` n ) -> ( 1 ..^ n ) C_ ( 1 ..^ I ) ) |
20 |
17 18 19
|
3syl |
|- ( ( ( ph /\ n e. N ) /\ N = ( 1 ..^ I ) ) -> ( 1 ..^ n ) C_ ( 1 ..^ I ) ) |
21 |
20 16
|
sseqtrrd |
|- ( ( ( ph /\ n e. N ) /\ N = ( 1 ..^ I ) ) -> ( 1 ..^ n ) C_ N ) |
22 |
3
|
adantr |
|- ( ( ph /\ n e. N ) -> ( N = NN \/ N = ( 1 ..^ I ) ) ) |
23 |
14 21 22
|
mpjaodan |
|- ( ( ph /\ n e. N ) -> ( 1 ..^ n ) C_ N ) |
24 |
23
|
sselda |
|- ( ( ( ph /\ n e. N ) /\ k e. ( 1 ..^ n ) ) -> k e. N ) |
25 |
5
|
sbimi |
|- ( [ k / n ] ( ph /\ n e. N ) -> [ k / n ] A e. S ) |
26 |
|
sban |
|- ( [ k / n ] ( ph /\ n e. N ) <-> ( [ k / n ] ph /\ [ k / n ] n e. N ) ) |
27 |
|
sbv |
|- ( [ k / n ] ph <-> ph ) |
28 |
|
clelsb3 |
|- ( [ k / n ] n e. N <-> k e. N ) |
29 |
27 28
|
anbi12i |
|- ( ( [ k / n ] ph /\ [ k / n ] n e. N ) <-> ( ph /\ k e. N ) ) |
30 |
26 29
|
bitri |
|- ( [ k / n ] ( ph /\ n e. N ) <-> ( ph /\ k e. N ) ) |
31 |
|
sbsbc |
|- ( [ k / n ] A e. S <-> [. k / n ]. A e. S ) |
32 |
|
sbcel1g |
|- ( k e. _V -> ( [. k / n ]. A e. S <-> [_ k / n ]_ A e. S ) ) |
33 |
32
|
elv |
|- ( [. k / n ]. A e. S <-> [_ k / n ]_ A e. S ) |
34 |
|
nfcv |
|- F/_ k A |
35 |
34 1 2
|
cbvcsbw |
|- [_ k / n ]_ A = [_ k / k ]_ B |
36 |
|
csbid |
|- [_ k / k ]_ B = B |
37 |
35 36
|
eqtri |
|- [_ k / n ]_ A = B |
38 |
37
|
eleq1i |
|- ( [_ k / n ]_ A e. S <-> B e. S ) |
39 |
31 33 38
|
3bitri |
|- ( [ k / n ] A e. S <-> B e. S ) |
40 |
25 30 39
|
3imtr3i |
|- ( ( ph /\ k e. N ) -> B e. S ) |
41 |
11 24 40
|
syl2anc |
|- ( ( ( ph /\ n e. N ) /\ k e. ( 1 ..^ n ) ) -> B e. S ) |
42 |
41
|
ralrimiva |
|- ( ( ph /\ n e. N ) -> A. k e. ( 1 ..^ n ) B e. S ) |
43 |
|
sigaclfu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. ( 1 ..^ n ) B e. S ) -> U_ k e. ( 1 ..^ n ) B e. S ) |
44 |
10 42 43
|
syl2anc |
|- ( ( ph /\ n e. N ) -> U_ k e. ( 1 ..^ n ) B e. S ) |
45 |
|
difelsiga |
|- ( ( S e. U. ran sigAlgebra /\ A e. S /\ U_ k e. ( 1 ..^ n ) B e. S ) -> ( A \ U_ k e. ( 1 ..^ n ) B ) e. S ) |
46 |
10 5 44 45
|
syl3anc |
|- ( ( ph /\ n e. N ) -> ( A \ U_ k e. ( 1 ..^ n ) B ) e. S ) |
47 |
46
|
ralrimiva |
|- ( ph -> A. n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) e. S ) |
48 |
|
eqimss |
|- ( N = NN -> N C_ NN ) |
49 |
|
fzossnn |
|- ( 1 ..^ I ) C_ NN |
50 |
|
sseq1 |
|- ( N = ( 1 ..^ I ) -> ( N C_ NN <-> ( 1 ..^ I ) C_ NN ) ) |
51 |
49 50
|
mpbiri |
|- ( N = ( 1 ..^ I ) -> N C_ NN ) |
52 |
48 51
|
jaoi |
|- ( ( N = NN \/ N = ( 1 ..^ I ) ) -> N C_ NN ) |
53 |
3 52
|
syl |
|- ( ph -> N C_ NN ) |
54 |
|
nnct |
|- NN ~<_ _om |
55 |
|
ssct |
|- ( ( N C_ NN /\ NN ~<_ _om ) -> N ~<_ _om ) |
56 |
53 54 55
|
sylancl |
|- ( ph -> N ~<_ _om ) |
57 |
1 2 3
|
iundisj2cnt |
|- ( ph -> Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) |
58 |
|
measvuni |
|- ( ( M e. ( measures ` S ) /\ A. n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) e. S /\ ( N ~<_ _om /\ Disj_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) -> ( M ` U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) = sum* n e. N ( M ` ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) |
59 |
4 47 56 57 58
|
syl112anc |
|- ( ph -> ( M ` U_ n e. N ( A \ U_ k e. ( 1 ..^ n ) B ) ) = sum* n e. N ( M ` ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) |
60 |
7 59
|
eqtrd |
|- ( ph -> ( M ` U_ n e. N A ) = sum* n e. N ( M ` ( A \ U_ k e. ( 1 ..^ n ) B ) ) ) |