| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meascnbl.0 |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 2 |
|
meascnbl.1 |
|- ( ph -> M e. ( measures ` S ) ) |
| 3 |
|
meascnbl.2 |
|- ( ph -> F : NN --> S ) |
| 4 |
|
meascnbl.3 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ ( F ` ( n + 1 ) ) ) |
| 5 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> M e. ( measures ` S ) ) |
| 6 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
| 7 |
2 6
|
syl |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ n e. NN ) -> S e. U. ran sigAlgebra ) |
| 9 |
3
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. S ) |
| 10 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> ph ) |
| 11 |
|
fzossnn |
|- ( 1 ..^ n ) C_ NN |
| 12 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> k e. ( 1 ..^ n ) ) |
| 13 |
11 12
|
sselid |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> k e. NN ) |
| 14 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. S ) |
| 15 |
10 13 14
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ..^ n ) ) -> ( F ` k ) e. S ) |
| 16 |
15
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. k e. ( 1 ..^ n ) ( F ` k ) e. S ) |
| 17 |
|
sigaclfu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. ( 1 ..^ n ) ( F ` k ) e. S ) -> U_ k e. ( 1 ..^ n ) ( F ` k ) e. S ) |
| 18 |
8 16 17
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> U_ k e. ( 1 ..^ n ) ( F ` k ) e. S ) |
| 19 |
|
difelsiga |
|- ( ( S e. U. ran sigAlgebra /\ ( F ` n ) e. S /\ U_ k e. ( 1 ..^ n ) ( F ` k ) e. S ) -> ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) e. S ) |
| 20 |
8 9 18 19
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) e. S ) |
| 21 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) e. S ) -> ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) e. ( 0 [,] +oo ) ) |
| 22 |
5 20 21
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) e. ( 0 [,] +oo ) ) |
| 23 |
|
fveq2 |
|- ( n = o -> ( F ` n ) = ( F ` o ) ) |
| 24 |
|
oveq2 |
|- ( n = o -> ( 1 ..^ n ) = ( 1 ..^ o ) ) |
| 25 |
24
|
iuneq1d |
|- ( n = o -> U_ k e. ( 1 ..^ n ) ( F ` k ) = U_ k e. ( 1 ..^ o ) ( F ` k ) ) |
| 26 |
23 25
|
difeq12d |
|- ( n = o -> ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) = ( ( F ` o ) \ U_ k e. ( 1 ..^ o ) ( F ` k ) ) ) |
| 27 |
26
|
fveq2d |
|- ( n = o -> ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) = ( M ` ( ( F ` o ) \ U_ k e. ( 1 ..^ o ) ( F ` k ) ) ) ) |
| 28 |
|
fveq2 |
|- ( n = p -> ( F ` n ) = ( F ` p ) ) |
| 29 |
|
oveq2 |
|- ( n = p -> ( 1 ..^ n ) = ( 1 ..^ p ) ) |
| 30 |
29
|
iuneq1d |
|- ( n = p -> U_ k e. ( 1 ..^ n ) ( F ` k ) = U_ k e. ( 1 ..^ p ) ( F ` k ) ) |
| 31 |
28 30
|
difeq12d |
|- ( n = p -> ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) = ( ( F ` p ) \ U_ k e. ( 1 ..^ p ) ( F ` k ) ) ) |
| 32 |
31
|
fveq2d |
|- ( n = p -> ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) = ( M ` ( ( F ` p ) \ U_ k e. ( 1 ..^ p ) ( F ` k ) ) ) ) |
| 33 |
1 22 27 32
|
esumcvg2 |
|- ( ph -> ( i e. NN |-> sum* n e. ( 1 ... i ) ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) ( ~~>t ` J ) sum* n e. NN ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) |
| 34 |
|
measfrge0 |
|- ( M e. ( measures ` S ) -> M : S --> ( 0 [,] +oo ) ) |
| 35 |
2 34
|
syl |
|- ( ph -> M : S --> ( 0 [,] +oo ) ) |
| 36 |
|
fcompt |
|- ( ( M : S --> ( 0 [,] +oo ) /\ F : NN --> S ) -> ( M o. F ) = ( i e. NN |-> ( M ` ( F ` i ) ) ) ) |
| 37 |
35 3 36
|
syl2anc |
|- ( ph -> ( M o. F ) = ( i e. NN |-> ( M ` ( F ` i ) ) ) ) |
| 38 |
|
nfcv |
|- F/_ n ( F ` k ) |
| 39 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
| 40 |
|
simpr |
|- ( ( ph /\ i e. NN ) -> i e. NN ) |
| 41 |
40
|
nnzd |
|- ( ( ph /\ i e. NN ) -> i e. ZZ ) |
| 42 |
|
fzval3 |
|- ( i e. ZZ -> ( 1 ... i ) = ( 1 ..^ ( i + 1 ) ) ) |
| 43 |
41 42
|
syl |
|- ( ( ph /\ i e. NN ) -> ( 1 ... i ) = ( 1 ..^ ( i + 1 ) ) ) |
| 44 |
43
|
olcd |
|- ( ( ph /\ i e. NN ) -> ( ( 1 ... i ) = NN \/ ( 1 ... i ) = ( 1 ..^ ( i + 1 ) ) ) ) |
| 45 |
2
|
adantr |
|- ( ( ph /\ i e. NN ) -> M e. ( measures ` S ) ) |
| 46 |
|
simpll |
|- ( ( ( ph /\ i e. NN ) /\ n e. ( 1 ... i ) ) -> ph ) |
| 47 |
|
fzossnn |
|- ( 1 ..^ ( i + 1 ) ) C_ NN |
| 48 |
43
|
eleq2d |
|- ( ( ph /\ i e. NN ) -> ( n e. ( 1 ... i ) <-> n e. ( 1 ..^ ( i + 1 ) ) ) ) |
| 49 |
48
|
biimpa |
|- ( ( ( ph /\ i e. NN ) /\ n e. ( 1 ... i ) ) -> n e. ( 1 ..^ ( i + 1 ) ) ) |
| 50 |
47 49
|
sselid |
|- ( ( ( ph /\ i e. NN ) /\ n e. ( 1 ... i ) ) -> n e. NN ) |
| 51 |
46 50 9
|
syl2anc |
|- ( ( ( ph /\ i e. NN ) /\ n e. ( 1 ... i ) ) -> ( F ` n ) e. S ) |
| 52 |
38 39 44 45 51
|
measiuns |
|- ( ( ph /\ i e. NN ) -> ( M ` U_ n e. ( 1 ... i ) ( F ` n ) ) = sum* n e. ( 1 ... i ) ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) |
| 53 |
3
|
ffnd |
|- ( ph -> F Fn NN ) |
| 54 |
53 4
|
iuninc |
|- ( ( ph /\ i e. NN ) -> U_ n e. ( 1 ... i ) ( F ` n ) = ( F ` i ) ) |
| 55 |
54
|
fveq2d |
|- ( ( ph /\ i e. NN ) -> ( M ` U_ n e. ( 1 ... i ) ( F ` n ) ) = ( M ` ( F ` i ) ) ) |
| 56 |
52 55
|
eqtr3d |
|- ( ( ph /\ i e. NN ) -> sum* n e. ( 1 ... i ) ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) = ( M ` ( F ` i ) ) ) |
| 57 |
56
|
mpteq2dva |
|- ( ph -> ( i e. NN |-> sum* n e. ( 1 ... i ) ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) = ( i e. NN |-> ( M ` ( F ` i ) ) ) ) |
| 58 |
37 57
|
eqtr4d |
|- ( ph -> ( M o. F ) = ( i e. NN |-> sum* n e. ( 1 ... i ) ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) ) |
| 59 |
9
|
ralrimiva |
|- ( ph -> A. n e. NN ( F ` n ) e. S ) |
| 60 |
|
dfiun2g |
|- ( A. n e. NN ( F ` n ) e. S -> U_ n e. NN ( F ` n ) = U. { x | E. n e. NN x = ( F ` n ) } ) |
| 61 |
59 60
|
syl |
|- ( ph -> U_ n e. NN ( F ` n ) = U. { x | E. n e. NN x = ( F ` n ) } ) |
| 62 |
|
fnrnfv |
|- ( F Fn NN -> ran F = { x | E. n e. NN x = ( F ` n ) } ) |
| 63 |
53 62
|
syl |
|- ( ph -> ran F = { x | E. n e. NN x = ( F ` n ) } ) |
| 64 |
63
|
unieqd |
|- ( ph -> U. ran F = U. { x | E. n e. NN x = ( F ` n ) } ) |
| 65 |
61 64
|
eqtr4d |
|- ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) |
| 66 |
65
|
fveq2d |
|- ( ph -> ( M ` U_ n e. NN ( F ` n ) ) = ( M ` U. ran F ) ) |
| 67 |
|
eqidd |
|- ( ph -> NN = NN ) |
| 68 |
67
|
orcd |
|- ( ph -> ( NN = NN \/ NN = ( 1 ..^ ( i + 1 ) ) ) ) |
| 69 |
38 39 68 2 9
|
measiuns |
|- ( ph -> ( M ` U_ n e. NN ( F ` n ) ) = sum* n e. NN ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) |
| 70 |
66 69
|
eqtr3d |
|- ( ph -> ( M ` U. ran F ) = sum* n e. NN ( M ` ( ( F ` n ) \ U_ k e. ( 1 ..^ n ) ( F ` k ) ) ) ) |
| 71 |
33 58 70
|
3brtr4d |
|- ( ph -> ( M o. F ) ( ~~>t ` J ) ( M ` U. ran F ) ) |