Metamath Proof Explorer


Theorem esumcvg2

Description: Simpler version of esumcvg . (Contributed by Thierry Arnoux, 5-Sep-2017)

Ref Expression
Hypotheses esumcvg2.j
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
esumcvg2.a
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) )
esumcvg2.l
|- ( k = l -> A = B )
esumcvg2.m
|- ( k = m -> A = C )
Assertion esumcvg2
|- ( ph -> ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ( ~~>t ` J ) sum* k e. NN A )

Proof

Step Hyp Ref Expression
1 esumcvg2.j
 |-  J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
2 esumcvg2.a
 |-  ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) )
3 esumcvg2.l
 |-  ( k = l -> A = B )
4 esumcvg2.m
 |-  ( k = m -> A = C )
5 4 cbvesumv
 |-  sum* k e. ( 1 ... i ) A = sum* m e. ( 1 ... i ) C
6 oveq2
 |-  ( i = n -> ( 1 ... i ) = ( 1 ... n ) )
7 esumeq1
 |-  ( ( 1 ... i ) = ( 1 ... n ) -> sum* k e. ( 1 ... i ) A = sum* k e. ( 1 ... n ) A )
8 6 7 syl
 |-  ( i = n -> sum* k e. ( 1 ... i ) A = sum* k e. ( 1 ... n ) A )
9 5 8 eqtr3id
 |-  ( i = n -> sum* m e. ( 1 ... i ) C = sum* k e. ( 1 ... n ) A )
10 9 cbvmptv
 |-  ( i e. NN |-> sum* m e. ( 1 ... i ) C ) = ( n e. NN |-> sum* k e. ( 1 ... n ) A )
11 1 10 2 3 esumcvg
 |-  ( ph -> ( i e. NN |-> sum* m e. ( 1 ... i ) C ) ( ~~>t ` J ) sum* k e. NN A )
12 10 11 eqbrtrrid
 |-  ( ph -> ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ( ~~>t ` J ) sum* k e. NN A )