Step |
Hyp |
Ref |
Expression |
1 |
|
esumcvg2.j |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
2 |
|
esumcvg2.a |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
3 |
|
esumcvg2.l |
|- ( k = l -> A = B ) |
4 |
|
esumcvg2.m |
|- ( k = m -> A = C ) |
5 |
4
|
cbvesumv |
|- sum* k e. ( 1 ... i ) A = sum* m e. ( 1 ... i ) C |
6 |
|
oveq2 |
|- ( i = n -> ( 1 ... i ) = ( 1 ... n ) ) |
7 |
|
esumeq1 |
|- ( ( 1 ... i ) = ( 1 ... n ) -> sum* k e. ( 1 ... i ) A = sum* k e. ( 1 ... n ) A ) |
8 |
6 7
|
syl |
|- ( i = n -> sum* k e. ( 1 ... i ) A = sum* k e. ( 1 ... n ) A ) |
9 |
5 8
|
eqtr3id |
|- ( i = n -> sum* m e. ( 1 ... i ) C = sum* k e. ( 1 ... n ) A ) |
10 |
9
|
cbvmptv |
|- ( i e. NN |-> sum* m e. ( 1 ... i ) C ) = ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
11 |
1 10 2 3
|
esumcvg |
|- ( ph -> ( i e. NN |-> sum* m e. ( 1 ... i ) C ) ( ~~>t ` J ) sum* k e. NN A ) |
12 |
10 11
|
eqbrtrrid |
|- ( ph -> ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ( ~~>t ` J ) sum* k e. NN A ) |