| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcvg.j |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 2 |
|
esumcvg.f |
|- F = ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
| 3 |
|
esumcvg.a |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 4 |
|
esumcvg.m |
|- ( k = m -> A = B ) |
| 5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 6 |
|
1zzd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> 1 e. ZZ ) |
| 7 |
|
simpr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> F e. dom ~~> ) |
| 8 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 9 |
|
ax-resscn |
|- RR C_ CC |
| 10 |
8 9
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
| 11 |
4
|
eleq1d |
|- ( k = m -> ( A e. ( 0 [,) +oo ) <-> B e. ( 0 [,) +oo ) ) ) |
| 12 |
11
|
cbvralvw |
|- ( A. k e. NN A e. ( 0 [,) +oo ) <-> A. m e. NN B e. ( 0 [,) +oo ) ) |
| 13 |
|
rsp |
|- ( A. k e. NN A e. ( 0 [,) +oo ) -> ( k e. NN -> A e. ( 0 [,) +oo ) ) ) |
| 14 |
12 13
|
sylbir |
|- ( A. m e. NN B e. ( 0 [,) +oo ) -> ( k e. NN -> A e. ( 0 [,) +oo ) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> ( k e. NN -> A e. ( 0 [,) +oo ) ) ) |
| 16 |
15
|
imp |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 17 |
10 16
|
sselid |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ k e. NN ) -> A e. CC ) |
| 18 |
17
|
adantlr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> A e. CC ) |
| 19 |
|
fzfid |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
| 20 |
|
elfznn |
|- ( k e. ( 1 ... n ) -> k e. NN ) |
| 21 |
20 16
|
sylan2 |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... n ) ) -> A e. ( 0 [,) +oo ) ) |
| 22 |
21
|
adantlr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( 0 [,) +oo ) ) |
| 23 |
19 22
|
esumpfinval |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> sum* k e. ( 1 ... n ) A = sum_ k e. ( 1 ... n ) A ) |
| 24 |
23
|
mpteq2dva |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> ( n e. NN |-> sum* k e. ( 1 ... n ) A ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) ) |
| 25 |
2 24
|
eqtrid |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> F = ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) ) |
| 26 |
10 22
|
sselid |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. CC ) |
| 27 |
19 26
|
fsumcl |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> sum_ k e. ( 1 ... n ) A e. CC ) |
| 28 |
25 27
|
fvmpt2d |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> ( F ` n ) = sum_ k e. ( 1 ... n ) A ) |
| 29 |
28
|
adantlr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ n e. NN ) -> ( F ` n ) = sum_ k e. ( 1 ... n ) A ) |
| 30 |
5 6 7 18 29
|
isumclim3 |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> F ~~> sum_ k e. NN A ) |
| 31 |
19 22
|
fsumrp0cl |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> sum_ k e. ( 1 ... n ) A e. ( 0 [,) +oo ) ) |
| 32 |
23 31
|
eqeltrd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> sum* k e. ( 1 ... n ) A e. ( 0 [,) +oo ) ) |
| 33 |
32 2
|
fmptd |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> F : NN --> ( 0 [,) +oo ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> F : NN --> ( 0 [,) +oo ) ) |
| 35 |
|
simplll |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> ph ) |
| 36 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( m e. NN |-> B ) = ( m e. NN |-> B ) ) |
| 37 |
|
eqcom |
|- ( k = m <-> m = k ) |
| 38 |
|
eqcom |
|- ( A = B <-> B = A ) |
| 39 |
4 37 38
|
3imtr3i |
|- ( m = k -> B = A ) |
| 40 |
39
|
adantl |
|- ( ( ( ph /\ k e. NN ) /\ m = k ) -> B = A ) |
| 41 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 42 |
36 40 41 3
|
fvmptd |
|- ( ( ph /\ k e. NN ) -> ( ( m e. NN |-> B ) ` k ) = A ) |
| 43 |
35 42
|
sylancom |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> ( ( m e. NN |-> B ) ` k ) = A ) |
| 44 |
16
|
adantlr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 45 |
|
elrege0 |
|- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
| 46 |
44 45
|
sylib |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> ( A e. RR /\ 0 <_ A ) ) |
| 47 |
46
|
simpld |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> A e. RR ) |
| 48 |
|
ovex |
|- ( 1 ... n ) e. _V |
| 49 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
| 50 |
20
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 51 |
49 50 3
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( 0 [,] +oo ) ) |
| 52 |
51
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 53 |
|
nfcv |
|- F/_ k ( 1 ... n ) |
| 54 |
53
|
esumcl |
|- ( ( ( 1 ... n ) e. _V /\ A. k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 55 |
48 52 54
|
sylancr |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 56 |
55 2
|
fmptd |
|- ( ph -> F : NN --> ( 0 [,] +oo ) ) |
| 57 |
56
|
ffnd |
|- ( ph -> F Fn NN ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> F Fn NN ) |
| 59 |
|
1z |
|- 1 e. ZZ |
| 60 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , ( m e. NN |-> B ) ) Fn ( ZZ>= ` 1 ) ) |
| 61 |
59 60
|
ax-mp |
|- seq 1 ( + , ( m e. NN |-> B ) ) Fn ( ZZ>= ` 1 ) |
| 62 |
5
|
fneq2i |
|- ( seq 1 ( + , ( m e. NN |-> B ) ) Fn NN <-> seq 1 ( + , ( m e. NN |-> B ) ) Fn ( ZZ>= ` 1 ) ) |
| 63 |
61 62
|
mpbir |
|- seq 1 ( + , ( m e. NN |-> B ) ) Fn NN |
| 64 |
63
|
a1i |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> seq 1 ( + , ( m e. NN |-> B ) ) Fn NN ) |
| 65 |
|
simplll |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
| 66 |
20 42
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> B ) ` k ) = A ) |
| 67 |
65 66
|
sylancom |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( m e. NN |-> B ) ` k ) = A ) |
| 68 |
|
simpr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> n e. NN ) |
| 69 |
68 5
|
eleqtrdi |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 70 |
67 69 26
|
fsumser |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> sum_ k e. ( 1 ... n ) A = ( seq 1 ( + , ( m e. NN |-> B ) ) ` n ) ) |
| 71 |
28 70
|
eqtrd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> ( F ` n ) = ( seq 1 ( + , ( m e. NN |-> B ) ) ` n ) ) |
| 72 |
58 64 71
|
eqfnfvd |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> F = seq 1 ( + , ( m e. NN |-> B ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> F = seq 1 ( + , ( m e. NN |-> B ) ) ) |
| 74 |
73 7
|
eqeltrrd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> seq 1 ( + , ( m e. NN |-> B ) ) e. dom ~~> ) |
| 75 |
5 6 43 47 74
|
isumrecl |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> sum_ k e. NN A e. RR ) |
| 76 |
46
|
simprd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) /\ k e. NN ) -> 0 <_ A ) |
| 77 |
5 6 43 47 74 76
|
isumge0 |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> 0 <_ sum_ k e. NN A ) |
| 78 |
|
elrege0 |
|- ( sum_ k e. NN A e. ( 0 [,) +oo ) <-> ( sum_ k e. NN A e. RR /\ 0 <_ sum_ k e. NN A ) ) |
| 79 |
75 77 78
|
sylanbrc |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> sum_ k e. NN A e. ( 0 [,) +oo ) ) |
| 80 |
|
ssid |
|- ( 0 [,) +oo ) C_ ( 0 [,) +oo ) |
| 81 |
1 34 79 80
|
lmlimxrge0 |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> ( F ( ~~>t ` J ) sum_ k e. NN A <-> F ~~> sum_ k e. NN A ) ) |
| 82 |
30 81
|
mpbird |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> F ( ~~>t ` J ) sum_ k e. NN A ) |
| 83 |
2 7
|
eqeltrrid |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> ( n e. NN |-> sum* k e. ( 1 ... n ) A ) e. dom ~~> ) |
| 84 |
24
|
eleq1d |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) e. dom ~~> <-> ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) e. dom ~~> ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) e. dom ~~> <-> ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) e. dom ~~> ) ) |
| 86 |
83 85
|
mpbid |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) A ) e. dom ~~> ) |
| 87 |
44 4 86
|
esumpcvgval |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> sum* k e. NN A = sum_ k e. NN A ) |
| 88 |
82 87
|
breqtrrd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ F e. dom ~~> ) -> F ( ~~>t ` J ) sum* k e. NN A ) |
| 89 |
33
|
adantr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> F : NN --> ( 0 [,) +oo ) ) |
| 90 |
|
simpr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> n e. NN ) |
| 91 |
90
|
nnzd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> n e. ZZ ) |
| 92 |
|
uzid |
|- ( n e. ZZ -> n e. ( ZZ>= ` n ) ) |
| 93 |
|
peano2uz |
|- ( n e. ( ZZ>= ` n ) -> ( n + 1 ) e. ( ZZ>= ` n ) ) |
| 94 |
91 92 93
|
3syl |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> ( n + 1 ) e. ( ZZ>= ` n ) ) |
| 95 |
|
simplll |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) /\ k e. NN ) -> ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) ) |
| 96 |
95 16
|
sylancom |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 97 |
90 94 96
|
esumpmono |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> sum* k e. ( 1 ... n ) A <_ sum* k e. ( 1 ... ( n + 1 ) ) A ) |
| 98 |
28 23
|
eqtr4d |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ n e. NN ) -> ( F ` n ) = sum* k e. ( 1 ... n ) A ) |
| 99 |
98
|
adantlr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> ( F ` n ) = sum* k e. ( 1 ... n ) A ) |
| 100 |
|
oveq2 |
|- ( l = n -> ( 1 ... l ) = ( 1 ... n ) ) |
| 101 |
|
esumeq1 |
|- ( ( 1 ... l ) = ( 1 ... n ) -> sum* k e. ( 1 ... l ) A = sum* k e. ( 1 ... n ) A ) |
| 102 |
100 101
|
syl |
|- ( l = n -> sum* k e. ( 1 ... l ) A = sum* k e. ( 1 ... n ) A ) |
| 103 |
102
|
cbvmptv |
|- ( l e. NN |-> sum* k e. ( 1 ... l ) A ) = ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
| 104 |
2 103
|
eqtr4i |
|- F = ( l e. NN |-> sum* k e. ( 1 ... l ) A ) |
| 105 |
104
|
a1i |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> F = ( l e. NN |-> sum* k e. ( 1 ... l ) A ) ) |
| 106 |
|
simpr3 |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ ( -. F e. dom ~~> /\ n e. NN /\ l = ( n + 1 ) ) ) -> l = ( n + 1 ) ) |
| 107 |
|
oveq2 |
|- ( l = ( n + 1 ) -> ( 1 ... l ) = ( 1 ... ( n + 1 ) ) ) |
| 108 |
|
esumeq1 |
|- ( ( 1 ... l ) = ( 1 ... ( n + 1 ) ) -> sum* k e. ( 1 ... l ) A = sum* k e. ( 1 ... ( n + 1 ) ) A ) |
| 109 |
106 107 108
|
3syl |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ ( -. F e. dom ~~> /\ n e. NN /\ l = ( n + 1 ) ) ) -> sum* k e. ( 1 ... l ) A = sum* k e. ( 1 ... ( n + 1 ) ) A ) |
| 110 |
109
|
3anassrs |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) /\ l = ( n + 1 ) ) -> sum* k e. ( 1 ... l ) A = sum* k e. ( 1 ... ( n + 1 ) ) A ) |
| 111 |
90
|
peano2nnd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> ( n + 1 ) e. NN ) |
| 112 |
|
ovex |
|- ( 1 ... ( n + 1 ) ) e. _V |
| 113 |
|
simp-4l |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) /\ k e. ( 1 ... ( n + 1 ) ) ) -> ph ) |
| 114 |
|
elfznn |
|- ( k e. ( 1 ... ( n + 1 ) ) -> k e. NN ) |
| 115 |
114
|
adantl |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) /\ k e. ( 1 ... ( n + 1 ) ) ) -> k e. NN ) |
| 116 |
113 115 3
|
syl2anc |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) /\ k e. ( 1 ... ( n + 1 ) ) ) -> A e. ( 0 [,] +oo ) ) |
| 117 |
116
|
ralrimiva |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> A. k e. ( 1 ... ( n + 1 ) ) A e. ( 0 [,] +oo ) ) |
| 118 |
|
nfcv |
|- F/_ k ( 1 ... ( n + 1 ) ) |
| 119 |
118
|
esumcl |
|- ( ( ( 1 ... ( n + 1 ) ) e. _V /\ A. k e. ( 1 ... ( n + 1 ) ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... ( n + 1 ) ) A e. ( 0 [,] +oo ) ) |
| 120 |
112 117 119
|
sylancr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> sum* k e. ( 1 ... ( n + 1 ) ) A e. ( 0 [,] +oo ) ) |
| 121 |
105 110 111 120
|
fvmptd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> ( F ` ( n + 1 ) ) = sum* k e. ( 1 ... ( n + 1 ) ) A ) |
| 122 |
97 99 121
|
3brtr4d |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ n e. NN ) -> ( F ` n ) <_ ( F ` ( n + 1 ) ) ) |
| 123 |
|
simpr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> -. F e. dom ~~> ) |
| 124 |
1 89 122 123
|
lmdvglim |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> F ( ~~>t ` J ) +oo ) |
| 125 |
|
nfv |
|- F/ k ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) |
| 126 |
|
nfcv |
|- F/_ k NN |
| 127 |
|
nnex |
|- NN e. _V |
| 128 |
127
|
a1i |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> NN e. _V ) |
| 129 |
3
|
adantlr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 130 |
|
simpr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) -> x e. ( ~P NN i^i Fin ) ) |
| 131 |
|
simpll |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) ) |
| 132 |
|
inss1 |
|- ( ~P NN i^i Fin ) C_ ~P NN |
| 133 |
|
simplr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> x e. ( ~P NN i^i Fin ) ) |
| 134 |
132 133
|
sselid |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> x e. ~P NN ) |
| 135 |
134
|
elpwid |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> x C_ NN ) |
| 136 |
|
simpr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> k e. x ) |
| 137 |
135 136
|
sseldd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> k e. NN ) |
| 138 |
131 137 16
|
syl2anc |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> A e. ( 0 [,) +oo ) ) |
| 139 |
138
|
fmpttd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) -> ( k e. x |-> A ) : x --> ( 0 [,) +oo ) ) |
| 140 |
|
esumpfinvallem |
|- ( ( x e. ( ~P NN i^i Fin ) /\ ( k e. x |-> A ) : x --> ( 0 [,) +oo ) ) -> ( CCfld gsum ( k e. x |-> A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> A ) ) ) |
| 141 |
130 139 140
|
syl2anc |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) -> ( CCfld gsum ( k e. x |-> A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> A ) ) ) |
| 142 |
|
inss2 |
|- ( ~P NN i^i Fin ) C_ Fin |
| 143 |
142 130
|
sselid |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) -> x e. Fin ) |
| 144 |
131 137 17
|
syl2anc |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> A e. CC ) |
| 145 |
143 144
|
gsumfsum |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) -> ( CCfld gsum ( k e. x |-> A ) ) = sum_ k e. x A ) |
| 146 |
141 145
|
eqtr3d |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ x e. ( ~P NN i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> A ) ) = sum_ k e. x A ) |
| 147 |
125 126 128 129 146
|
esumval |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> sum* k e. NN A = sup ( ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) , RR* , < ) ) |
| 148 |
147
|
adantr |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> sum* k e. NN A = sup ( ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) , RR* , < ) ) |
| 149 |
89 122 123
|
lmdvg |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> A. y e. RR E. l e. NN A. n e. ( ZZ>= ` l ) y < ( F ` n ) ) |
| 150 |
149
|
r19.21bi |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) -> E. l e. NN A. n e. ( ZZ>= ` l ) y < ( F ` n ) ) |
| 151 |
|
nnz |
|- ( l e. NN -> l e. ZZ ) |
| 152 |
|
uzid |
|- ( l e. ZZ -> l e. ( ZZ>= ` l ) ) |
| 153 |
151 152
|
syl |
|- ( l e. NN -> l e. ( ZZ>= ` l ) ) |
| 154 |
|
simpr |
|- ( ( l e. NN /\ n = l ) -> n = l ) |
| 155 |
154
|
fveq2d |
|- ( ( l e. NN /\ n = l ) -> ( F ` n ) = ( F ` l ) ) |
| 156 |
155
|
breq2d |
|- ( ( l e. NN /\ n = l ) -> ( y < ( F ` n ) <-> y < ( F ` l ) ) ) |
| 157 |
153 156
|
rspcdv |
|- ( l e. NN -> ( A. n e. ( ZZ>= ` l ) y < ( F ` n ) -> y < ( F ` l ) ) ) |
| 158 |
157
|
reximia |
|- ( E. l e. NN A. n e. ( ZZ>= ` l ) y < ( F ` n ) -> E. l e. NN y < ( F ` l ) ) |
| 159 |
150 158
|
syl |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) -> E. l e. NN y < ( F ` l ) ) |
| 160 |
|
simplr |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> y e. RR ) |
| 161 |
89
|
ad2antrr |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> F : NN --> ( 0 [,) +oo ) ) |
| 162 |
|
simpr |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> l e. NN ) |
| 163 |
161 162
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( F ` l ) e. ( 0 [,) +oo ) ) |
| 164 |
8 163
|
sselid |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( F ` l ) e. RR ) |
| 165 |
|
ltle |
|- ( ( y e. RR /\ ( F ` l ) e. RR ) -> ( y < ( F ` l ) -> y <_ ( F ` l ) ) ) |
| 166 |
160 164 165
|
syl2anc |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( y < ( F ` l ) -> y <_ ( F ` l ) ) ) |
| 167 |
|
oveq2 |
|- ( n = l -> ( 1 ... n ) = ( 1 ... l ) ) |
| 168 |
|
esumeq1 |
|- ( ( 1 ... n ) = ( 1 ... l ) -> sum* k e. ( 1 ... n ) A = sum* k e. ( 1 ... l ) A ) |
| 169 |
167 168
|
syl |
|- ( n = l -> sum* k e. ( 1 ... n ) A = sum* k e. ( 1 ... l ) A ) |
| 170 |
|
esumex |
|- sum* k e. ( 1 ... l ) A e. _V |
| 171 |
170
|
a1i |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> sum* k e. ( 1 ... l ) A e. _V ) |
| 172 |
2 169 162 171
|
fvmptd3 |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( F ` l ) = sum* k e. ( 1 ... l ) A ) |
| 173 |
|
fzfid |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( 1 ... l ) e. Fin ) |
| 174 |
|
simp-4l |
|- ( ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) /\ k e. ( 1 ... l ) ) -> ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) ) |
| 175 |
|
elfznn |
|- ( k e. ( 1 ... l ) -> k e. NN ) |
| 176 |
175
|
adantl |
|- ( ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) /\ k e. ( 1 ... l ) ) -> k e. NN ) |
| 177 |
174 176 16
|
syl2anc |
|- ( ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) /\ k e. ( 1 ... l ) ) -> A e. ( 0 [,) +oo ) ) |
| 178 |
173 177
|
esumpfinval |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> sum* k e. ( 1 ... l ) A = sum_ k e. ( 1 ... l ) A ) |
| 179 |
172 178
|
eqtrd |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( F ` l ) = sum_ k e. ( 1 ... l ) A ) |
| 180 |
179
|
breq2d |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( y <_ ( F ` l ) <-> y <_ sum_ k e. ( 1 ... l ) A ) ) |
| 181 |
166 180
|
sylibd |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) /\ l e. NN ) -> ( y < ( F ` l ) -> y <_ sum_ k e. ( 1 ... l ) A ) ) |
| 182 |
181
|
reximdva |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) -> ( E. l e. NN y < ( F ` l ) -> E. l e. NN y <_ sum_ k e. ( 1 ... l ) A ) ) |
| 183 |
159 182
|
mpd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) -> E. l e. NN y <_ sum_ k e. ( 1 ... l ) A ) |
| 184 |
|
fzssuz |
|- ( 1 ... l ) C_ ( ZZ>= ` 1 ) |
| 185 |
184 5
|
sseqtrri |
|- ( 1 ... l ) C_ NN |
| 186 |
|
ovex |
|- ( 1 ... l ) e. _V |
| 187 |
186
|
elpw |
|- ( ( 1 ... l ) e. ~P NN <-> ( 1 ... l ) C_ NN ) |
| 188 |
185 187
|
mpbir |
|- ( 1 ... l ) e. ~P NN |
| 189 |
|
fzfi |
|- ( 1 ... l ) e. Fin |
| 190 |
|
elin |
|- ( ( 1 ... l ) e. ( ~P NN i^i Fin ) <-> ( ( 1 ... l ) e. ~P NN /\ ( 1 ... l ) e. Fin ) ) |
| 191 |
188 189 190
|
mpbir2an |
|- ( 1 ... l ) e. ( ~P NN i^i Fin ) |
| 192 |
|
sumex |
|- sum_ k e. ( 1 ... l ) A e. _V |
| 193 |
|
eqid |
|- ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) = ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) |
| 194 |
|
sumeq1 |
|- ( x = ( 1 ... l ) -> sum_ k e. x A = sum_ k e. ( 1 ... l ) A ) |
| 195 |
193 194
|
elrnmpt1s |
|- ( ( ( 1 ... l ) e. ( ~P NN i^i Fin ) /\ sum_ k e. ( 1 ... l ) A e. _V ) -> sum_ k e. ( 1 ... l ) A e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) ) |
| 196 |
191 192 195
|
mp2an |
|- sum_ k e. ( 1 ... l ) A e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) |
| 197 |
|
nfv |
|- F/ z y <_ sum_ k e. ( 1 ... l ) A |
| 198 |
|
breq2 |
|- ( z = sum_ k e. ( 1 ... l ) A -> ( y <_ z <-> y <_ sum_ k e. ( 1 ... l ) A ) ) |
| 199 |
197 198
|
rspce |
|- ( ( sum_ k e. ( 1 ... l ) A e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) /\ y <_ sum_ k e. ( 1 ... l ) A ) -> E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z ) |
| 200 |
196 199
|
mpan |
|- ( y <_ sum_ k e. ( 1 ... l ) A -> E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z ) |
| 201 |
200
|
rexlimivw |
|- ( E. l e. NN y <_ sum_ k e. ( 1 ... l ) A -> E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z ) |
| 202 |
183 201
|
syl |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ y e. RR ) -> E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z ) |
| 203 |
202
|
ralrimiva |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> A. y e. RR E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z ) |
| 204 |
|
simpr |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ x e. ( ~P NN i^i Fin ) ) -> x e. ( ~P NN i^i Fin ) ) |
| 205 |
142 204
|
sselid |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ x e. ( ~P NN i^i Fin ) ) -> x e. Fin ) |
| 206 |
138
|
adantllr |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> A e. ( 0 [,) +oo ) ) |
| 207 |
8 206
|
sselid |
|- ( ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ x e. ( ~P NN i^i Fin ) ) /\ k e. x ) -> A e. RR ) |
| 208 |
205 207
|
fsumrecl |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ x e. ( ~P NN i^i Fin ) ) -> sum_ k e. x A e. RR ) |
| 209 |
208
|
rexrd |
|- ( ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) /\ x e. ( ~P NN i^i Fin ) ) -> sum_ k e. x A e. RR* ) |
| 210 |
209
|
fmpttd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) : ( ~P NN i^i Fin ) --> RR* ) |
| 211 |
|
frn |
|- ( ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) : ( ~P NN i^i Fin ) --> RR* -> ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) C_ RR* ) |
| 212 |
|
supxrunb1 |
|- ( ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) C_ RR* -> ( A. y e. RR E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z <-> sup ( ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) , RR* , < ) = +oo ) ) |
| 213 |
210 211 212
|
3syl |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> ( A. y e. RR E. z e. ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) y <_ z <-> sup ( ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) , RR* , < ) = +oo ) ) |
| 214 |
203 213
|
mpbid |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> sup ( ran ( x e. ( ~P NN i^i Fin ) |-> sum_ k e. x A ) , RR* , < ) = +oo ) |
| 215 |
148 214
|
eqtrd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> sum* k e. NN A = +oo ) |
| 216 |
124 215
|
breqtrrd |
|- ( ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) /\ -. F e. dom ~~> ) -> F ( ~~>t ` J ) sum* k e. NN A ) |
| 217 |
88 216
|
pm2.61dan |
|- ( ( ph /\ A. m e. NN B e. ( 0 [,) +oo ) ) -> F ( ~~>t ` J ) sum* k e. NN A ) |
| 218 |
2
|
reseq1i |
|- ( F |` ( ZZ>= ` k ) ) = ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` k ) ) |
| 219 |
|
eleq1w |
|- ( l = k -> ( l e. NN <-> k e. NN ) ) |
| 220 |
219
|
anbi2d |
|- ( l = k -> ( ( ph /\ l e. NN ) <-> ( ph /\ k e. NN ) ) ) |
| 221 |
|
sbequ12r |
|- ( l = k -> ( [ l / k ] A = +oo <-> A = +oo ) ) |
| 222 |
220 221
|
anbi12d |
|- ( l = k -> ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) <-> ( ( ph /\ k e. NN ) /\ A = +oo ) ) ) |
| 223 |
|
fveq2 |
|- ( l = k -> ( ZZ>= ` l ) = ( ZZ>= ` k ) ) |
| 224 |
223
|
reseq2d |
|- ( l = k -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` k ) ) ) |
| 225 |
223
|
xpeq1d |
|- ( l = k -> ( ( ZZ>= ` l ) X. { +oo } ) = ( ( ZZ>= ` k ) X. { +oo } ) ) |
| 226 |
224 225
|
eqeq12d |
|- ( l = k -> ( ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( ( ZZ>= ` l ) X. { +oo } ) <-> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) ) |
| 227 |
222 226
|
imbi12d |
|- ( l = k -> ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( ( ZZ>= ` l ) X. { +oo } ) ) <-> ( ( ( ph /\ k e. NN ) /\ A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) ) ) |
| 228 |
|
nfv |
|- F/ k ( ph /\ l e. NN ) |
| 229 |
|
nfs1v |
|- F/ k [ l / k ] A = +oo |
| 230 |
228 229
|
nfan |
|- F/ k ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) |
| 231 |
|
nfv |
|- F/ k n e. ( ZZ>= ` l ) |
| 232 |
230 231
|
nfan |
|- F/ k ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) |
| 233 |
|
ovexd |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) -> ( 1 ... n ) e. _V ) |
| 234 |
|
simp-4l |
|- ( ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) /\ k e. ( 1 ... n ) ) -> ph ) |
| 235 |
20
|
adantl |
|- ( ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 236 |
234 235 3
|
syl2anc |
|- ( ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) /\ k e. ( 1 ... n ) ) -> A e. ( 0 [,] +oo ) ) |
| 237 |
|
simpllr |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) -> l e. NN ) |
| 238 |
|
elnnuz |
|- ( l e. NN <-> l e. ( ZZ>= ` 1 ) ) |
| 239 |
|
eluzfz |
|- ( ( l e. ( ZZ>= ` 1 ) /\ n e. ( ZZ>= ` l ) ) -> l e. ( 1 ... n ) ) |
| 240 |
238 239
|
sylanb |
|- ( ( l e. NN /\ n e. ( ZZ>= ` l ) ) -> l e. ( 1 ... n ) ) |
| 241 |
237 240
|
sylancom |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) -> l e. ( 1 ... n ) ) |
| 242 |
|
simplr |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) -> [ l / k ] A = +oo ) |
| 243 |
|
sbequ12 |
|- ( k = l -> ( A = +oo <-> [ l / k ] A = +oo ) ) |
| 244 |
229 243
|
rspce |
|- ( ( l e. ( 1 ... n ) /\ [ l / k ] A = +oo ) -> E. k e. ( 1 ... n ) A = +oo ) |
| 245 |
241 242 244
|
syl2anc |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) -> E. k e. ( 1 ... n ) A = +oo ) |
| 246 |
232 233 236 245
|
esumpinfval |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ n e. ( ZZ>= ` l ) ) -> sum* k e. ( 1 ... n ) A = +oo ) |
| 247 |
246
|
ralrimiva |
|- ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) -> A. n e. ( ZZ>= ` l ) sum* k e. ( 1 ... n ) A = +oo ) |
| 248 |
|
eqidd |
|- ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) -> ( ZZ>= ` l ) = ( ZZ>= ` l ) ) |
| 249 |
|
mpteq12 |
|- ( ( ( ZZ>= ` l ) = ( ZZ>= ` l ) /\ A. n e. ( ZZ>= ` l ) sum* k e. ( 1 ... n ) A = +oo ) -> ( n e. ( ZZ>= ` l ) |-> sum* k e. ( 1 ... n ) A ) = ( n e. ( ZZ>= ` l ) |-> +oo ) ) |
| 250 |
248 249
|
sylan |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ A. n e. ( ZZ>= ` l ) sum* k e. ( 1 ... n ) A = +oo ) -> ( n e. ( ZZ>= ` l ) |-> sum* k e. ( 1 ... n ) A ) = ( n e. ( ZZ>= ` l ) |-> +oo ) ) |
| 251 |
|
simplr |
|- ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) -> l e. NN ) |
| 252 |
|
uznnssnn |
|- ( l e. NN -> ( ZZ>= ` l ) C_ NN ) |
| 253 |
|
resmpt |
|- ( ( ZZ>= ` l ) C_ NN -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( n e. ( ZZ>= ` l ) |-> sum* k e. ( 1 ... n ) A ) ) |
| 254 |
251 252 253
|
3syl |
|- ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( n e. ( ZZ>= ` l ) |-> sum* k e. ( 1 ... n ) A ) ) |
| 255 |
254
|
adantr |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ A. n e. ( ZZ>= ` l ) sum* k e. ( 1 ... n ) A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( n e. ( ZZ>= ` l ) |-> sum* k e. ( 1 ... n ) A ) ) |
| 256 |
|
fconstmpt |
|- ( ( ZZ>= ` l ) X. { +oo } ) = ( n e. ( ZZ>= ` l ) |-> +oo ) |
| 257 |
256
|
a1i |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ A. n e. ( ZZ>= ` l ) sum* k e. ( 1 ... n ) A = +oo ) -> ( ( ZZ>= ` l ) X. { +oo } ) = ( n e. ( ZZ>= ` l ) |-> +oo ) ) |
| 258 |
250 255 257
|
3eqtr4d |
|- ( ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) /\ A. n e. ( ZZ>= ` l ) sum* k e. ( 1 ... n ) A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( ( ZZ>= ` l ) X. { +oo } ) ) |
| 259 |
247 258
|
mpdan |
|- ( ( ( ph /\ l e. NN ) /\ [ l / k ] A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` l ) ) = ( ( ZZ>= ` l ) X. { +oo } ) ) |
| 260 |
227 259
|
chvarvv |
|- ( ( ( ph /\ k e. NN ) /\ A = +oo ) -> ( ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) |
| 261 |
218 260
|
eqtrid |
|- ( ( ( ph /\ k e. NN ) /\ A = +oo ) -> ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) |
| 262 |
261
|
ex |
|- ( ( ph /\ k e. NN ) -> ( A = +oo -> ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) ) |
| 263 |
262
|
reximdva |
|- ( ph -> ( E. k e. NN A = +oo -> E. k e. NN ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) ) |
| 264 |
263
|
imp |
|- ( ( ph /\ E. k e. NN A = +oo ) -> E. k e. NN ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) |
| 265 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 266 |
1 265
|
eqtri |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 267 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
| 268 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 269 |
|
resttopon |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) ) |
| 270 |
267 268 269
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) |
| 271 |
266 270
|
eqeltri |
|- J e. ( TopOn ` ( 0 [,] +oo ) ) |
| 272 |
271
|
a1i |
|- ( ( ph /\ k e. NN ) -> J e. ( TopOn ` ( 0 [,] +oo ) ) ) |
| 273 |
|
0xr |
|- 0 e. RR* |
| 274 |
|
pnfxr |
|- +oo e. RR* |
| 275 |
|
0lepnf |
|- 0 <_ +oo |
| 276 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
| 277 |
273 274 275 276
|
mp3an |
|- +oo e. ( 0 [,] +oo ) |
| 278 |
277
|
a1i |
|- ( ( ph /\ k e. NN ) -> +oo e. ( 0 [,] +oo ) ) |
| 279 |
41
|
nnzd |
|- ( ( ph /\ k e. NN ) -> k e. ZZ ) |
| 280 |
|
eqid |
|- ( ZZ>= ` k ) = ( ZZ>= ` k ) |
| 281 |
280
|
lmconst |
|- ( ( J e. ( TopOn ` ( 0 [,] +oo ) ) /\ +oo e. ( 0 [,] +oo ) /\ k e. ZZ ) -> ( ( ZZ>= ` k ) X. { +oo } ) ( ~~>t ` J ) +oo ) |
| 282 |
272 278 279 281
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( ( ZZ>= ` k ) X. { +oo } ) ( ~~>t ` J ) +oo ) |
| 283 |
|
breq1 |
|- ( ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) -> ( ( F |` ( ZZ>= ` k ) ) ( ~~>t ` J ) +oo <-> ( ( ZZ>= ` k ) X. { +oo } ) ( ~~>t ` J ) +oo ) ) |
| 284 |
283
|
biimprd |
|- ( ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) -> ( ( ( ZZ>= ` k ) X. { +oo } ) ( ~~>t ` J ) +oo -> ( F |` ( ZZ>= ` k ) ) ( ~~>t ` J ) +oo ) ) |
| 285 |
282 284
|
mpan9 |
|- ( ( ( ph /\ k e. NN ) /\ ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) -> ( F |` ( ZZ>= ` k ) ) ( ~~>t ` J ) +oo ) |
| 286 |
|
ovexd |
|- ( ( ph /\ k e. NN ) -> ( 0 [,] +oo ) e. _V ) |
| 287 |
|
cnex |
|- CC e. _V |
| 288 |
287
|
a1i |
|- ( ( ph /\ k e. NN ) -> CC e. _V ) |
| 289 |
56
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : NN --> ( 0 [,] +oo ) ) |
| 290 |
|
nnsscn |
|- NN C_ CC |
| 291 |
290
|
a1i |
|- ( ( ph /\ k e. NN ) -> NN C_ CC ) |
| 292 |
|
elpm2r |
|- ( ( ( ( 0 [,] +oo ) e. _V /\ CC e. _V ) /\ ( F : NN --> ( 0 [,] +oo ) /\ NN C_ CC ) ) -> F e. ( ( 0 [,] +oo ) ^pm CC ) ) |
| 293 |
286 288 289 291 292
|
syl22anc |
|- ( ( ph /\ k e. NN ) -> F e. ( ( 0 [,] +oo ) ^pm CC ) ) |
| 294 |
272 293 279
|
lmres |
|- ( ( ph /\ k e. NN ) -> ( F ( ~~>t ` J ) +oo <-> ( F |` ( ZZ>= ` k ) ) ( ~~>t ` J ) +oo ) ) |
| 295 |
294
|
biimpar |
|- ( ( ( ph /\ k e. NN ) /\ ( F |` ( ZZ>= ` k ) ) ( ~~>t ` J ) +oo ) -> F ( ~~>t ` J ) +oo ) |
| 296 |
285 295
|
syldan |
|- ( ( ( ph /\ k e. NN ) /\ ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) -> F ( ~~>t ` J ) +oo ) |
| 297 |
296
|
r19.29an |
|- ( ( ph /\ E. k e. NN ( F |` ( ZZ>= ` k ) ) = ( ( ZZ>= ` k ) X. { +oo } ) ) -> F ( ~~>t ` J ) +oo ) |
| 298 |
264 297
|
syldan |
|- ( ( ph /\ E. k e. NN A = +oo ) -> F ( ~~>t ` J ) +oo ) |
| 299 |
|
nfv |
|- F/ k ph |
| 300 |
|
nfre1 |
|- F/ k E. k e. NN A = +oo |
| 301 |
299 300
|
nfan |
|- F/ k ( ph /\ E. k e. NN A = +oo ) |
| 302 |
127
|
a1i |
|- ( ( ph /\ E. k e. NN A = +oo ) -> NN e. _V ) |
| 303 |
3
|
adantlr |
|- ( ( ( ph /\ E. k e. NN A = +oo ) /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 304 |
|
simpr |
|- ( ( ph /\ E. k e. NN A = +oo ) -> E. k e. NN A = +oo ) |
| 305 |
301 302 303 304
|
esumpinfval |
|- ( ( ph /\ E. k e. NN A = +oo ) -> sum* k e. NN A = +oo ) |
| 306 |
298 305
|
breqtrrd |
|- ( ( ph /\ E. k e. NN A = +oo ) -> F ( ~~>t ` J ) sum* k e. NN A ) |
| 307 |
|
eleq1w |
|- ( k = m -> ( k e. NN <-> m e. NN ) ) |
| 308 |
307
|
anbi2d |
|- ( k = m -> ( ( ph /\ k e. NN ) <-> ( ph /\ m e. NN ) ) ) |
| 309 |
4
|
eleq1d |
|- ( k = m -> ( A e. ( 0 [,] +oo ) <-> B e. ( 0 [,] +oo ) ) ) |
| 310 |
308 309
|
imbi12d |
|- ( k = m -> ( ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) <-> ( ( ph /\ m e. NN ) -> B e. ( 0 [,] +oo ) ) ) ) |
| 311 |
310 3
|
chvarvv |
|- ( ( ph /\ m e. NN ) -> B e. ( 0 [,] +oo ) ) |
| 312 |
|
eliccelico |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( B e. ( 0 [,] +oo ) <-> ( B e. ( 0 [,) +oo ) \/ B = +oo ) ) ) |
| 313 |
273 274 275 312
|
mp3an |
|- ( B e. ( 0 [,] +oo ) <-> ( B e. ( 0 [,) +oo ) \/ B = +oo ) ) |
| 314 |
311 313
|
sylib |
|- ( ( ph /\ m e. NN ) -> ( B e. ( 0 [,) +oo ) \/ B = +oo ) ) |
| 315 |
314
|
ralrimiva |
|- ( ph -> A. m e. NN ( B e. ( 0 [,) +oo ) \/ B = +oo ) ) |
| 316 |
|
r19.30 |
|- ( A. m e. NN ( B e. ( 0 [,) +oo ) \/ B = +oo ) -> ( A. m e. NN B e. ( 0 [,) +oo ) \/ E. m e. NN B = +oo ) ) |
| 317 |
315 316
|
syl |
|- ( ph -> ( A. m e. NN B e. ( 0 [,) +oo ) \/ E. m e. NN B = +oo ) ) |
| 318 |
4
|
eqeq1d |
|- ( k = m -> ( A = +oo <-> B = +oo ) ) |
| 319 |
318
|
cbvrexvw |
|- ( E. k e. NN A = +oo <-> E. m e. NN B = +oo ) |
| 320 |
319
|
orbi2i |
|- ( ( A. m e. NN B e. ( 0 [,) +oo ) \/ E. k e. NN A = +oo ) <-> ( A. m e. NN B e. ( 0 [,) +oo ) \/ E. m e. NN B = +oo ) ) |
| 321 |
317 320
|
sylibr |
|- ( ph -> ( A. m e. NN B e. ( 0 [,) +oo ) \/ E. k e. NN A = +oo ) ) |
| 322 |
217 306 321
|
mpjaodan |
|- ( ph -> F ( ~~>t ` J ) sum* k e. NN A ) |