| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmlimxrge0.j |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 2 |
|
lmlimxrge0.f |
|- ( ph -> F : NN --> X ) |
| 3 |
|
lmlimxrge0.p |
|- ( ph -> P e. X ) |
| 4 |
|
lmlimxrge0.x |
|- X C_ ( 0 [,) +oo ) |
| 5 |
|
xrge0topn |
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 6 |
1 5
|
eqtri |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 7 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
| 8 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 9 |
|
resttopon |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) ) |
| 10 |
7 8 9
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) |
| 11 |
6 10
|
eqeltri |
|- J e. ( TopOn ` ( 0 [,] +oo ) ) |
| 12 |
|
fvex |
|- ( ordTop ` <_ ) e. _V |
| 13 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 14 |
4 13
|
sstri |
|- X C_ ( 0 [,] +oo ) |
| 15 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
| 16 |
|
restabs |
|- ( ( ( ordTop ` <_ ) e. _V /\ X C_ ( 0 [,] +oo ) /\ ( 0 [,] +oo ) e. _V ) -> ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t X ) = ( ( ordTop ` <_ ) |`t X ) ) |
| 17 |
12 14 15 16
|
mp3an |
|- ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t X ) = ( ( ordTop ` <_ ) |`t X ) |
| 18 |
6
|
oveq1i |
|- ( J |`t X ) = ( ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |`t X ) |
| 19 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 20 |
4 19
|
sstri |
|- X C_ RR |
| 21 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 22 |
|
eqid |
|- ( ordTop ` <_ ) = ( ordTop ` <_ ) |
| 23 |
21 22
|
xrrest2 |
|- ( X C_ RR -> ( ( TopOpen ` CCfld ) |`t X ) = ( ( ordTop ` <_ ) |`t X ) ) |
| 24 |
20 23
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t X ) = ( ( ordTop ` <_ ) |`t X ) |
| 25 |
17 18 24
|
3eqtr4i |
|- ( J |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
| 26 |
|
ax-resscn |
|- RR C_ CC |
| 27 |
20 26
|
sstri |
|- X C_ CC |
| 28 |
11 2 3 25 27
|
lmlim |
|- ( ph -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |