| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 2 |  | 1zzd |  |-  ( F : NN --> ( 0 [,) +oo ) -> 1 e. ZZ ) | 
						
							| 3 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 4 |  | fss |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : NN --> RR ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( F : NN --> ( 0 [,) +oo ) -> F : NN --> RR ) | 
						
							| 6 | 5 | ffvelcdmda |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> ( F ` j ) e. RR ) | 
						
							| 7 | 1 2 6 | serfre |  |-  ( F : NN --> ( 0 [,) +oo ) -> seq 1 ( + , F ) : NN --> RR ) | 
						
							| 8 | 7 | frnd |  |-  ( F : NN --> ( 0 [,) +oo ) -> ran seq 1 ( + , F ) C_ RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ran seq 1 ( + , F ) C_ RR ) | 
						
							| 10 |  | 1nn |  |-  1 e. NN | 
						
							| 11 |  | fdm |  |-  ( seq 1 ( + , F ) : NN --> RR -> dom seq 1 ( + , F ) = NN ) | 
						
							| 12 | 10 11 | eleqtrrid |  |-  ( seq 1 ( + , F ) : NN --> RR -> 1 e. dom seq 1 ( + , F ) ) | 
						
							| 13 |  | ne0i |  |-  ( 1 e. dom seq 1 ( + , F ) -> dom seq 1 ( + , F ) =/= (/) ) | 
						
							| 14 |  | dm0rn0 |  |-  ( dom seq 1 ( + , F ) = (/) <-> ran seq 1 ( + , F ) = (/) ) | 
						
							| 15 | 14 | necon3bii |  |-  ( dom seq 1 ( + , F ) =/= (/) <-> ran seq 1 ( + , F ) =/= (/) ) | 
						
							| 16 | 13 15 | sylib |  |-  ( 1 e. dom seq 1 ( + , F ) -> ran seq 1 ( + , F ) =/= (/) ) | 
						
							| 17 | 7 12 16 | 3syl |  |-  ( F : NN --> ( 0 [,) +oo ) -> ran seq 1 ( + , F ) =/= (/) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ran seq 1 ( + , F ) =/= (/) ) | 
						
							| 19 |  | 1zzd |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> 1 e. ZZ ) | 
						
							| 20 |  | climdm |  |-  ( seq 1 ( + , F ) e. dom ~~> <-> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) | 
						
							| 21 | 20 | biimpi |  |-  ( seq 1 ( + , F ) e. dom ~~> -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) | 
						
							| 23 | 7 | adantr |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , F ) : NN --> RR ) | 
						
							| 24 | 23 | ffvelcdmda |  |-  ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) e. RR ) | 
						
							| 25 | 1 19 22 24 | climrecl |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ( ~~> ` seq 1 ( + , F ) ) e. RR ) | 
						
							| 26 |  | simpr |  |-  ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> k e. NN ) | 
						
							| 27 | 22 | adantr |  |-  ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) | 
						
							| 28 |  | simplll |  |-  ( ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) /\ j e. NN ) -> F : NN --> ( 0 [,) +oo ) ) | 
						
							| 29 |  | ffvelcdm |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> ( F ` j ) e. ( 0 [,) +oo ) ) | 
						
							| 30 | 3 29 | sselid |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> ( F ` j ) e. RR ) | 
						
							| 31 | 28 30 | sylancom |  |-  ( ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) /\ j e. NN ) -> ( F ` j ) e. RR ) | 
						
							| 32 |  | elrege0 |  |-  ( ( F ` j ) e. ( 0 [,) +oo ) <-> ( ( F ` j ) e. RR /\ 0 <_ ( F ` j ) ) ) | 
						
							| 33 | 32 | simprbi |  |-  ( ( F ` j ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` j ) ) | 
						
							| 34 | 29 33 | syl |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) | 
						
							| 35 | 34 | adantlr |  |-  ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) | 
						
							| 36 | 35 | adantlr |  |-  ( ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) | 
						
							| 37 | 1 26 27 31 36 | climserle |  |-  ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) | 
						
							| 38 | 37 | ralrimiva |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) | 
						
							| 39 |  | brralrspcev |  |-  ( ( ( ~~> ` seq 1 ( + , F ) ) e. RR /\ A. k e. NN ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) -> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) | 
						
							| 40 | 25 38 39 | syl2anc |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) | 
						
							| 41 |  | ffn |  |-  ( seq 1 ( + , F ) : NN --> RR -> seq 1 ( + , F ) Fn NN ) | 
						
							| 42 |  | breq1 |  |-  ( z = ( seq 1 ( + , F ) ` k ) -> ( z <_ x <-> ( seq 1 ( + , F ) ` k ) <_ x ) ) | 
						
							| 43 | 42 | ralrn |  |-  ( seq 1 ( + , F ) Fn NN -> ( A. z e. ran seq 1 ( + , F ) z <_ x <-> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) | 
						
							| 44 | 7 41 43 | 3syl |  |-  ( F : NN --> ( 0 [,) +oo ) -> ( A. z e. ran seq 1 ( + , F ) z <_ x <-> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) | 
						
							| 45 | 44 | rexbidv |  |-  ( F : NN --> ( 0 [,) +oo ) -> ( E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x <-> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ( E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x <-> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) | 
						
							| 47 | 40 46 | mpbird |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x ) | 
						
							| 48 |  | suprcl |  |-  ( ( ran seq 1 ( + , F ) C_ RR /\ ran seq 1 ( + , F ) =/= (/) /\ E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x ) -> sup ( ran seq 1 ( + , F ) , RR , < ) e. RR ) | 
						
							| 49 | 9 18 47 48 | syl3anc |  |-  ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> sup ( ran seq 1 ( + , F ) , RR , < ) e. RR ) |