Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
2 |
|
1zzd |
|- ( F : NN --> ( 0 [,) +oo ) -> 1 e. ZZ ) |
3 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
4 |
|
fss |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : NN --> RR ) |
5 |
3 4
|
mpan2 |
|- ( F : NN --> ( 0 [,) +oo ) -> F : NN --> RR ) |
6 |
5
|
ffvelrnda |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> ( F ` j ) e. RR ) |
7 |
1 2 6
|
serfre |
|- ( F : NN --> ( 0 [,) +oo ) -> seq 1 ( + , F ) : NN --> RR ) |
8 |
7
|
frnd |
|- ( F : NN --> ( 0 [,) +oo ) -> ran seq 1 ( + , F ) C_ RR ) |
9 |
8
|
adantr |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ran seq 1 ( + , F ) C_ RR ) |
10 |
|
1nn |
|- 1 e. NN |
11 |
|
fdm |
|- ( seq 1 ( + , F ) : NN --> RR -> dom seq 1 ( + , F ) = NN ) |
12 |
10 11
|
eleqtrrid |
|- ( seq 1 ( + , F ) : NN --> RR -> 1 e. dom seq 1 ( + , F ) ) |
13 |
|
ne0i |
|- ( 1 e. dom seq 1 ( + , F ) -> dom seq 1 ( + , F ) =/= (/) ) |
14 |
|
dm0rn0 |
|- ( dom seq 1 ( + , F ) = (/) <-> ran seq 1 ( + , F ) = (/) ) |
15 |
14
|
necon3bii |
|- ( dom seq 1 ( + , F ) =/= (/) <-> ran seq 1 ( + , F ) =/= (/) ) |
16 |
13 15
|
sylib |
|- ( 1 e. dom seq 1 ( + , F ) -> ran seq 1 ( + , F ) =/= (/) ) |
17 |
7 12 16
|
3syl |
|- ( F : NN --> ( 0 [,) +oo ) -> ran seq 1 ( + , F ) =/= (/) ) |
18 |
17
|
adantr |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ran seq 1 ( + , F ) =/= (/) ) |
19 |
|
1zzd |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> 1 e. ZZ ) |
20 |
|
climdm |
|- ( seq 1 ( + , F ) e. dom ~~> <-> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
21 |
20
|
biimpi |
|- ( seq 1 ( + , F ) e. dom ~~> -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
22 |
21
|
adantl |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
23 |
7
|
adantr |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , F ) : NN --> RR ) |
24 |
23
|
ffvelrnda |
|- ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) e. RR ) |
25 |
1 19 22 24
|
climrecl |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ( ~~> ` seq 1 ( + , F ) ) e. RR ) |
26 |
|
simpr |
|- ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> k e. NN ) |
27 |
22
|
adantr |
|- ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
28 |
|
simplll |
|- ( ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) /\ j e. NN ) -> F : NN --> ( 0 [,) +oo ) ) |
29 |
|
ffvelrn |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> ( F ` j ) e. ( 0 [,) +oo ) ) |
30 |
3 29
|
sselid |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> ( F ` j ) e. RR ) |
31 |
28 30
|
sylancom |
|- ( ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) /\ j e. NN ) -> ( F ` j ) e. RR ) |
32 |
|
elrege0 |
|- ( ( F ` j ) e. ( 0 [,) +oo ) <-> ( ( F ` j ) e. RR /\ 0 <_ ( F ` j ) ) ) |
33 |
32
|
simprbi |
|- ( ( F ` j ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` j ) ) |
34 |
29 33
|
syl |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) |
35 |
34
|
adantlr |
|- ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) |
36 |
35
|
adantlr |
|- ( ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) |
37 |
1 26 27 31 36
|
climserle |
|- ( ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) |
38 |
37
|
ralrimiva |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) |
39 |
|
brralrspcev |
|- ( ( ( ~~> ` seq 1 ( + , F ) ) e. RR /\ A. k e. NN ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) -> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) |
40 |
25 38 39
|
syl2anc |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) |
41 |
|
ffn |
|- ( seq 1 ( + , F ) : NN --> RR -> seq 1 ( + , F ) Fn NN ) |
42 |
|
breq1 |
|- ( z = ( seq 1 ( + , F ) ` k ) -> ( z <_ x <-> ( seq 1 ( + , F ) ` k ) <_ x ) ) |
43 |
42
|
ralrn |
|- ( seq 1 ( + , F ) Fn NN -> ( A. z e. ran seq 1 ( + , F ) z <_ x <-> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) |
44 |
7 41 43
|
3syl |
|- ( F : NN --> ( 0 [,) +oo ) -> ( A. z e. ran seq 1 ( + , F ) z <_ x <-> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) |
45 |
44
|
rexbidv |
|- ( F : NN --> ( 0 [,) +oo ) -> ( E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x <-> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) |
46 |
45
|
adantr |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> ( E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x <-> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) |
47 |
40 46
|
mpbird |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x ) |
48 |
|
suprcl |
|- ( ( ran seq 1 ( + , F ) C_ RR /\ ran seq 1 ( + , F ) =/= (/) /\ E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x ) -> sup ( ran seq 1 ( + , F ) , RR , < ) e. RR ) |
49 |
9 18 47 48
|
syl3anc |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ seq 1 ( + , F ) e. dom ~~> ) -> sup ( ran seq 1 ( + , F ) , RR , < ) e. RR ) |