Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 . (Contributed by Thierry Arnoux, 28-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | rge0scvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz | |
|
2 | 1zzd | |
|
3 | rge0ssre | |
|
4 | fss | |
|
5 | 3 4 | mpan2 | |
6 | 5 | ffvelcdmda | |
7 | 1 2 6 | serfre | |
8 | 7 | frnd | |
9 | 8 | adantr | |
10 | 1nn | |
|
11 | fdm | |
|
12 | 10 11 | eleqtrrid | |
13 | ne0i | |
|
14 | dm0rn0 | |
|
15 | 14 | necon3bii | |
16 | 13 15 | sylib | |
17 | 7 12 16 | 3syl | |
18 | 17 | adantr | |
19 | 1zzd | |
|
20 | climdm | |
|
21 | 20 | biimpi | |
22 | 21 | adantl | |
23 | 7 | adantr | |
24 | 23 | ffvelcdmda | |
25 | 1 19 22 24 | climrecl | |
26 | simpr | |
|
27 | 22 | adantr | |
28 | simplll | |
|
29 | ffvelcdm | |
|
30 | 3 29 | sselid | |
31 | 28 30 | sylancom | |
32 | elrege0 | |
|
33 | 32 | simprbi | |
34 | 29 33 | syl | |
35 | 34 | adantlr | |
36 | 35 | adantlr | |
37 | 1 26 27 31 36 | climserle | |
38 | 37 | ralrimiva | |
39 | brralrspcev | |
|
40 | 25 38 39 | syl2anc | |
41 | ffn | |
|
42 | breq1 | |
|
43 | 42 | ralrn | |
44 | 7 41 43 | 3syl | |
45 | 44 | rexbidv | |
46 | 45 | adantr | |
47 | 40 46 | mpbird | |
48 | suprcl | |
|
49 | 9 18 47 48 | syl3anc | |