| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 2 |
|
1zzd |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → 1 ∈ ℤ ) |
| 3 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 4 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℕ ⟶ ℝ ) |
| 5 |
3 4
|
mpan2 |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → 𝐹 : ℕ ⟶ ℝ ) |
| 6 |
5
|
ffvelcdmda |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 7 |
1 2 6
|
serfre |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 8 |
7
|
frnd |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , 𝐹 ) ⊆ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ran seq 1 ( + , 𝐹 ) ⊆ ℝ ) |
| 10 |
|
1nn |
⊢ 1 ∈ ℕ |
| 11 |
|
fdm |
⊢ ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ → dom seq 1 ( + , 𝐹 ) = ℕ ) |
| 12 |
10 11
|
eleqtrrid |
⊢ ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ → 1 ∈ dom seq 1 ( + , 𝐹 ) ) |
| 13 |
|
ne0i |
⊢ ( 1 ∈ dom seq 1 ( + , 𝐹 ) → dom seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 14 |
|
dm0rn0 |
⊢ ( dom seq 1 ( + , 𝐹 ) = ∅ ↔ ran seq 1 ( + , 𝐹 ) = ∅ ) |
| 15 |
14
|
necon3bii |
⊢ ( dom seq 1 ( + , 𝐹 ) ≠ ∅ ↔ ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 16 |
13 15
|
sylib |
⊢ ( 1 ∈ dom seq 1 ( + , 𝐹 ) → ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 17 |
7 12 16
|
3syl |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 19 |
|
1zzd |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → 1 ∈ ℤ ) |
| 20 |
|
climdm |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 21 |
20
|
biimpi |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 23 |
7
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℝ ) |
| 25 |
1 19 22 24
|
climrecl |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∈ ℝ ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 27 |
22
|
adantr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 28 |
|
simplll |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 29 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 30 |
3 29
|
sselid |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 31 |
28 30
|
sylancom |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 32 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 33 |
32
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) → 0 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 34 |
29 33
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 35 |
34
|
adantlr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 36 |
35
|
adantlr |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 37 |
1 26 27 31 36
|
climserle |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 38 |
37
|
ralrimiva |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 39 |
|
brralrspcev |
⊢ ( ( ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 40 |
25 38 39
|
syl2anc |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 41 |
|
ffn |
⊢ ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ → seq 1 ( + , 𝐹 ) Fn ℕ ) |
| 42 |
|
breq1 |
⊢ ( 𝑧 = ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 43 |
42
|
ralrn |
⊢ ( seq 1 ( + , 𝐹 ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 44 |
7 41 43
|
3syl |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 45 |
44
|
rexbidv |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 47 |
40 46
|
mpbird |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ) |
| 48 |
|
suprcl |
⊢ ( ( ran seq 1 ( + , 𝐹 ) ⊆ ℝ ∧ ran seq 1 ( + , 𝐹 ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ) → sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ∈ ℝ ) |
| 49 |
9 18 47 48
|
syl3anc |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) → sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ∈ ℝ ) |