| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmrec.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ) |
| 2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 3 |
|
1zzd |
⊢ ( ⊤ → 1 ∈ ℤ ) |
| 4 |
|
nnrecre |
⊢ ( 𝑛 ∈ ℕ → ( 1 / 𝑛 ) ∈ ℝ ) |
| 5 |
4
|
adantl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
|
ifcl |
⊢ ( ( ( 1 / 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ∈ ℝ ) |
| 8 |
5 6 7
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) ∈ ℝ ) |
| 9 |
8 1
|
fmptd |
⊢ ( ⊤ → 𝐹 : ℕ ⟶ ℝ ) |
| 10 |
9
|
ffvelcdmda |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 11 |
2 3 10
|
serfre |
⊢ ( ⊤ → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 12 |
11
|
mptru |
⊢ seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ |
| 13 |
|
frn |
⊢ ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ → ran seq 1 ( + , 𝐹 ) ⊆ ℝ ) |
| 14 |
12 13
|
mp1i |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ran seq 1 ( + , 𝐹 ) ⊆ ℝ ) |
| 15 |
|
1nn |
⊢ 1 ∈ ℕ |
| 16 |
12
|
fdmi |
⊢ dom seq 1 ( + , 𝐹 ) = ℕ |
| 17 |
15 16
|
eleqtrri |
⊢ 1 ∈ dom seq 1 ( + , 𝐹 ) |
| 18 |
|
ne0i |
⊢ ( 1 ∈ dom seq 1 ( + , 𝐹 ) → dom seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 19 |
|
dm0rn0 |
⊢ ( dom seq 1 ( + , 𝐹 ) = ∅ ↔ ran seq 1 ( + , 𝐹 ) = ∅ ) |
| 20 |
19
|
necon3bii |
⊢ ( dom seq 1 ( + , 𝐹 ) ≠ ∅ ↔ ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 21 |
18 20
|
sylib |
⊢ ( 1 ∈ dom seq 1 ( + , 𝐹 ) → ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 22 |
17 21
|
mp1i |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ran seq 1 ( + , 𝐹 ) ≠ ∅ ) |
| 23 |
|
1zzd |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → 1 ∈ ℤ ) |
| 24 |
|
climdm |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 25 |
24
|
biimpi |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 26 |
12
|
a1i |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ ) |
| 27 |
26
|
ffvelcdmda |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ∈ ℝ ) |
| 28 |
2 23 25 27
|
climrecl |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∈ ℝ ) |
| 29 |
|
simpr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 30 |
25
|
adantr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → seq 1 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 31 |
|
eleq1w |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ ℙ ↔ 𝑗 ∈ ℙ ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 1 / 𝑛 ) = ( 1 / 𝑗 ) ) |
| 33 |
31 32
|
ifbieq1d |
⊢ ( 𝑛 = 𝑗 → if ( 𝑛 ∈ ℙ , ( 1 / 𝑛 ) , 0 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 34 |
|
prmnn |
⊢ ( 𝑗 ∈ ℙ → 𝑗 ∈ ℕ ) |
| 35 |
34
|
adantl |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℙ ) → 𝑗 ∈ ℕ ) |
| 36 |
35
|
nnrecred |
⊢ ( ( ⊤ ∧ 𝑗 ∈ ℙ ) → ( 1 / 𝑗 ) ∈ ℝ ) |
| 37 |
6
|
a1i |
⊢ ( ( ⊤ ∧ ¬ 𝑗 ∈ ℙ ) → 0 ∈ ℝ ) |
| 38 |
36 37
|
ifclda |
⊢ ( ⊤ → if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 39 |
38
|
mptru |
⊢ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ |
| 40 |
39
|
elexi |
⊢ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ V |
| 41 |
33 1 40
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 42 |
41
|
adantl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 43 |
39
|
a1i |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 44 |
42 43
|
eqeltrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 45 |
44
|
adantlr |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 46 |
|
nnrp |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ+ ) |
| 47 |
46
|
adantl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℝ+ ) |
| 48 |
47
|
rpreccld |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 1 / 𝑗 ) ∈ ℝ+ ) |
| 49 |
48
|
rpge0d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( 1 / 𝑗 ) ) |
| 50 |
|
0le0 |
⊢ 0 ≤ 0 |
| 51 |
|
breq2 |
⊢ ( ( 1 / 𝑗 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) → ( 0 ≤ ( 1 / 𝑗 ) ↔ 0 ≤ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) ) |
| 52 |
|
breq2 |
⊢ ( 0 = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) ) |
| 53 |
51 52
|
ifboth |
⊢ ( ( 0 ≤ ( 1 / 𝑗 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 54 |
49 50 53
|
sylancl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 0 ≤ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 55 |
54 42
|
breqtrrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 56 |
55
|
adantlr |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 57 |
2 29 30 45 56
|
climserle |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 58 |
57
|
ralrimiva |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) |
| 59 |
|
brralrspcev |
⊢ ( ( ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ ( ⇝ ‘ seq 1 ( + , 𝐹 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 60 |
28 58 59
|
syl2anc |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 61 |
|
ffn |
⊢ ( seq 1 ( + , 𝐹 ) : ℕ ⟶ ℝ → seq 1 ( + , 𝐹 ) Fn ℕ ) |
| 62 |
|
breq1 |
⊢ ( 𝑧 = ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 63 |
62
|
ralrn |
⊢ ( seq 1 ( + , 𝐹 ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 64 |
12 61 63
|
mp2b |
⊢ ( ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 65 |
64
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ≤ 𝑥 ) |
| 66 |
60 65
|
sylibr |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ) |
| 67 |
14 22 66
|
suprcld |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ∈ ℝ ) |
| 68 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 69 |
|
rpreccl |
⊢ ( 2 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
| 70 |
68 69
|
ax-mp |
⊢ ( 1 / 2 ) ∈ ℝ+ |
| 71 |
|
ltsubrp |
⊢ ( ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ+ ) → ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ) |
| 72 |
67 70 71
|
sylancl |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ) |
| 73 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 74 |
|
resubcl |
⊢ ( ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) ∈ ℝ ) |
| 75 |
67 73 74
|
sylancl |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) ∈ ℝ ) |
| 76 |
|
suprlub |
⊢ ( ( ( ran seq 1 ( + , 𝐹 ) ⊆ ℝ ∧ ran seq 1 ( + , 𝐹 ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , 𝐹 ) 𝑧 ≤ 𝑥 ) ∧ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) ∈ ℝ ) → ( ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ↔ ∃ 𝑦 ∈ ran seq 1 ( + , 𝐹 ) ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < 𝑦 ) ) |
| 77 |
14 22 66 75 76
|
syl31anc |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ( ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ↔ ∃ 𝑦 ∈ ran seq 1 ( + , 𝐹 ) ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < 𝑦 ) ) |
| 78 |
72 77
|
mpbid |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ∃ 𝑦 ∈ ran seq 1 ( + , 𝐹 ) ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < 𝑦 ) |
| 79 |
|
breq2 |
⊢ ( 𝑦 = ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) → ( ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < 𝑦 ↔ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 80 |
79
|
rexrn |
⊢ ( seq 1 ( + , 𝐹 ) Fn ℕ → ( ∃ 𝑦 ∈ ran seq 1 ( + , 𝐹 ) ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 81 |
12 61 80
|
mp2b |
⊢ ( ∃ 𝑦 ∈ ran seq 1 ( + , 𝐹 ) ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 82 |
78 81
|
sylib |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ∃ 𝑘 ∈ ℕ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 83 |
|
2re |
⊢ 2 ∈ ℝ |
| 84 |
|
2nn |
⊢ 2 ∈ ℕ |
| 85 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
| 86 |
84 29 85
|
sylancr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
| 87 |
86
|
peano2nnd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
| 88 |
87
|
nnnn0d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
| 89 |
|
reexpcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
| 90 |
83 88 89
|
sylancr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℝ ) |
| 91 |
90
|
ltnrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ¬ ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) < ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 92 |
29
|
adantr |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) → 𝑘 ∈ ℕ ) |
| 93 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 94 |
93
|
adantl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 95 |
94
|
nnnn0d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 96 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 97 |
84 95 96
|
sylancr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 98 |
97
|
nnsqcld |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ∈ ℕ ) |
| 99 |
98
|
adantr |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) → ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ∈ ℕ ) |
| 100 |
|
breq1 |
⊢ ( 𝑝 = 𝑤 → ( 𝑝 ∥ 𝑟 ↔ 𝑤 ∥ 𝑟 ) ) |
| 101 |
100
|
notbid |
⊢ ( 𝑝 = 𝑤 → ( ¬ 𝑝 ∥ 𝑟 ↔ ¬ 𝑤 ∥ 𝑟 ) ) |
| 102 |
101
|
cbvralvw |
⊢ ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑝 ∥ 𝑟 ↔ ∀ 𝑤 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑤 ∥ 𝑟 ) |
| 103 |
|
breq2 |
⊢ ( 𝑟 = 𝑛 → ( 𝑤 ∥ 𝑟 ↔ 𝑤 ∥ 𝑛 ) ) |
| 104 |
103
|
notbid |
⊢ ( 𝑟 = 𝑛 → ( ¬ 𝑤 ∥ 𝑟 ↔ ¬ 𝑤 ∥ 𝑛 ) ) |
| 105 |
104
|
ralbidv |
⊢ ( 𝑟 = 𝑛 → ( ∀ 𝑤 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑤 ∥ 𝑟 ↔ ∀ 𝑤 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑤 ∥ 𝑛 ) ) |
| 106 |
102 105
|
bitrid |
⊢ ( 𝑟 = 𝑛 → ( ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑝 ∥ 𝑟 ↔ ∀ 𝑤 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑤 ∥ 𝑛 ) ) |
| 107 |
106
|
cbvrabv |
⊢ { 𝑟 ∈ ( 1 ... ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ∣ ∀ 𝑝 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑝 ∥ 𝑟 } = { 𝑛 ∈ ( 1 ... ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ∣ ∀ 𝑤 ∈ ( ℙ ∖ ( 1 ... 𝑘 ) ) ¬ 𝑤 ∥ 𝑛 } |
| 108 |
|
simpll |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 109 |
|
eleq1w |
⊢ ( 𝑚 = 𝑗 → ( 𝑚 ∈ ℙ ↔ 𝑗 ∈ ℙ ) ) |
| 110 |
|
oveq2 |
⊢ ( 𝑚 = 𝑗 → ( 1 / 𝑚 ) = ( 1 / 𝑗 ) ) |
| 111 |
109 110
|
ifbieq1d |
⊢ ( 𝑚 = 𝑗 → if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 112 |
111
|
cbvsumv |
⊢ Σ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) = Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) |
| 113 |
|
simpr |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) → Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) |
| 114 |
112 113
|
eqbrtrid |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) → Σ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) < ( 1 / 2 ) ) |
| 115 |
|
eqid |
⊢ ( 𝑤 ∈ ℕ ↦ { 𝑛 ∈ ( 1 ... ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ∣ ( 𝑤 ∈ ℙ ∧ 𝑤 ∥ 𝑛 ) } ) = ( 𝑤 ∈ ℕ ↦ { 𝑛 ∈ ( 1 ... ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ∣ ( 𝑤 ∈ ℙ ∧ 𝑤 ∥ 𝑛 ) } ) |
| 116 |
1 92 99 107 108 114 115
|
prmreclem5 |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ) → ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) / 2 ) < ( ( 2 ↑ 𝑘 ) · ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ) ) |
| 117 |
116
|
ex |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) → ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) / 2 ) < ( ( 2 ↑ 𝑘 ) · ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ) ) ) |
| 118 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) = ( ℤ≥ ‘ ( 𝑘 + 1 ) ) |
| 119 |
94
|
nnzd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 120 |
|
eluznn |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 121 |
94 120
|
sylan |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑗 ∈ ℕ ) |
| 122 |
121 41
|
syl |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → ( 𝐹 ‘ 𝑗 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 123 |
39
|
a1i |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 124 |
|
simpl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 125 |
41
|
adantl |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 126 |
39
|
recni |
⊢ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℂ |
| 127 |
126
|
a1i |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℂ ) |
| 128 |
125 127
|
eqeltrd |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 129 |
2 94 128
|
iserex |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq ( 𝑘 + 1 ) ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 130 |
124 129
|
mpbid |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → seq ( 𝑘 + 1 ) ( + , 𝐹 ) ∈ dom ⇝ ) |
| 131 |
118 119 122 123 130
|
isumrecl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 132 |
73
|
a1i |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 1 / 2 ) ∈ ℝ ) |
| 133 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑘 ) → 𝑗 ∈ ℕ ) |
| 134 |
133
|
adantl |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → 𝑗 ∈ ℕ ) |
| 135 |
134 41
|
syl |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑗 ) = if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 136 |
29 2
|
eleqtrdi |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 137 |
126
|
a1i |
⊢ ( ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... 𝑘 ) ) → if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℂ ) |
| 138 |
135 136 137
|
fsumser |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 139 |
138 27
|
eqeltrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 140 |
131 132 139
|
ltadd2d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ↔ ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) < ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 141 |
2 118 94 125 127 124
|
isumsplit |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) = ( Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) ) |
| 142 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 143 |
142
|
adantl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 144 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 145 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 146 |
143 144 145
|
sylancl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 147 |
146
|
oveq2d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) = ( 1 ... 𝑘 ) ) |
| 148 |
147
|
sumeq1d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) = Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) |
| 149 |
148
|
oveq1d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( 1 ... ( ( 𝑘 + 1 ) − 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) ) |
| 150 |
141 149
|
eqtrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) = ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) ) |
| 151 |
150
|
breq1d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + ( 1 / 2 ) ) ↔ ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ) < ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 152 |
140 151
|
bitr4d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ↔ Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 153 |
|
eqid |
⊢ seq 1 ( + , 𝐹 ) = seq 1 ( + , 𝐹 ) |
| 154 |
2 153 23 42 43 54 60
|
isumsup |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) = sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ) |
| 155 |
154 67
|
eqeltrd |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 156 |
155
|
adantr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ∈ ℝ ) |
| 157 |
156 132 139
|
ltsubaddd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) − ( 1 / 2 ) ) < Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ↔ Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 158 |
154
|
adantr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) = sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) ) |
| 159 |
158
|
oveq1d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) − ( 1 / 2 ) ) = ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) ) |
| 160 |
159 138
|
breq12d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( Σ 𝑗 ∈ ℕ if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) − ( 1 / 2 ) ) < Σ 𝑗 ∈ ( 1 ... 𝑘 ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) ↔ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 161 |
152 157 160
|
3bitr2d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( Σ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) if ( 𝑗 ∈ ℙ , ( 1 / 𝑗 ) , 0 ) < ( 1 / 2 ) ↔ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) ) |
| 162 |
|
2cn |
⊢ 2 ∈ ℂ |
| 163 |
162
|
a1i |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 2 ∈ ℂ ) |
| 164 |
144
|
a1i |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
| 165 |
163 143 164
|
adddid |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
| 166 |
94
|
nncnd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 167 |
|
mulcom |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 2 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
| 168 |
166 162 167
|
sylancl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) · 2 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
| 169 |
86
|
nncnd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℂ ) |
| 170 |
169 164 164
|
addassd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) = ( ( 2 · 𝑘 ) + ( 1 + 1 ) ) ) |
| 171 |
144
|
2timesi |
⊢ ( 2 · 1 ) = ( 1 + 1 ) |
| 172 |
171
|
oveq2i |
⊢ ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + ( 1 + 1 ) ) |
| 173 |
170 172
|
eqtr4di |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
| 174 |
165 168 173
|
3eqtr4d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) · 2 ) = ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) |
| 175 |
174
|
oveq2d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( ( 𝑘 + 1 ) · 2 ) ) = ( 2 ↑ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) |
| 176 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 177 |
176
|
a1i |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 2 ∈ ℕ0 ) |
| 178 |
163 177 95
|
expmuld |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( ( 𝑘 + 1 ) · 2 ) ) = ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) |
| 179 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) ) |
| 180 |
162 88 179
|
sylancr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) ) |
| 181 |
175 178 180
|
3eqtr3d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) = ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) ) |
| 182 |
181
|
oveq1d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) / 2 ) = ( ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) / 2 ) ) |
| 183 |
|
expcl |
⊢ ( ( 2 ∈ ℂ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 184 |
162 88 183
|
sylancr |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
| 185 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 186 |
|
divcan4 |
⊢ ( ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) / 2 ) = ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 187 |
162 185 186
|
mp3an23 |
⊢ ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ → ( ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) / 2 ) = ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 188 |
184 187
|
syl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · 2 ) / 2 ) = ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 189 |
182 188
|
eqtrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) / 2 ) = ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 190 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 191 |
190
|
adantl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 192 |
163 95 191
|
expaddd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑘 + ( 𝑘 + 1 ) ) ) = ( ( 2 ↑ 𝑘 ) · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 193 |
143
|
2timesd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) = ( 𝑘 + 𝑘 ) ) |
| 194 |
193
|
oveq1d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 𝑘 + 𝑘 ) + 1 ) ) |
| 195 |
143 143 164
|
addassd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 𝑘 ) + 1 ) = ( 𝑘 + ( 𝑘 + 1 ) ) ) |
| 196 |
194 195
|
eqtrd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) = ( 𝑘 + ( 𝑘 + 1 ) ) ) |
| 197 |
196
|
oveq2d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( 2 ↑ ( 𝑘 + ( 𝑘 + 1 ) ) ) ) |
| 198 |
97
|
nnrpd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) |
| 199 |
198
|
rprege0d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 200 |
|
sqrtsq |
⊢ ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ ( 𝑘 + 1 ) ) ) → ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 201 |
199 200
|
syl |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 202 |
201
|
oveq2d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 ↑ 𝑘 ) · ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ) = ( ( 2 ↑ 𝑘 ) · ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 203 |
192 197 202
|
3eqtr4rd |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( 2 ↑ 𝑘 ) · ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ) = ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
| 204 |
189 203
|
breq12d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) / 2 ) < ( ( 2 ↑ 𝑘 ) · ( √ ‘ ( ( 2 ↑ ( 𝑘 + 1 ) ) ↑ 2 ) ) ) ↔ ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) < ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 205 |
117 161 204
|
3imtr3d |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) → ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) < ( 2 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 206 |
91 205
|
mtod |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ¬ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 207 |
206
|
nrexdv |
⊢ ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ → ¬ ∃ 𝑘 ∈ ℕ ( sup ( ran seq 1 ( + , 𝐹 ) , ℝ , < ) − ( 1 / 2 ) ) < ( seq 1 ( + , 𝐹 ) ‘ 𝑘 ) ) |
| 208 |
82 207
|
pm2.65i |
⊢ ¬ seq 1 ( + , 𝐹 ) ∈ dom ⇝ |