| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmrec.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) ) |
| 2 |
|
inss2 |
⊢ ( ℙ ∩ ( 1 ... 𝑛 ) ) ⊆ ( 1 ... 𝑛 ) |
| 3 |
|
elinel2 |
⊢ ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ( 1 ... 𝑛 ) ) |
| 4 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
| 5 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℂ ) |
| 7 |
3 4 6
|
3syl |
⊢ ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 8 |
7
|
rgen |
⊢ ∀ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) ∈ ℂ |
| 9 |
2 8
|
pm3.2i |
⊢ ( ( ℙ ∩ ( 1 ... 𝑛 ) ) ⊆ ( 1 ... 𝑛 ) ∧ ∀ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) ∈ ℂ ) |
| 10 |
|
fzfi |
⊢ ( 1 ... 𝑛 ) ∈ Fin |
| 11 |
10
|
olci |
⊢ ( ( 1 ... 𝑛 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑛 ) ∈ Fin ) |
| 12 |
|
sumss2 |
⊢ ( ( ( ( ℙ ∩ ( 1 ... 𝑛 ) ) ⊆ ( 1 ... 𝑛 ) ∧ ∀ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) ∈ ℂ ) ∧ ( ( 1 ... 𝑛 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝑛 ) ∈ Fin ) ) → Σ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) , ( 1 / 𝑘 ) , 0 ) ) |
| 13 |
9 11 12
|
mp2an |
⊢ Σ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) , ( 1 / 𝑘 ) , 0 ) |
| 14 |
|
elin |
⊢ ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ↔ ( 𝑘 ∈ ℙ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) ) |
| 15 |
14
|
rbaib |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ↔ 𝑘 ∈ ℙ ) ) |
| 16 |
15
|
ifbid |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → if ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) , ( 1 / 𝑘 ) , 0 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
| 17 |
16
|
sumeq2i |
⊢ Σ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) , ( 1 / 𝑘 ) , 0 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) |
| 18 |
13 17
|
eqtri |
⊢ Σ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) |
| 19 |
4
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 20 |
|
prmnn |
⊢ ( 𝑘 ∈ ℙ → 𝑘 ∈ ℕ ) |
| 21 |
20 6
|
syl |
⊢ ( 𝑘 ∈ ℙ → ( 1 / 𝑘 ) ∈ ℂ ) |
| 22 |
21
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℙ ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 23 |
|
0cnd |
⊢ ( ( ⊤ ∧ ¬ 𝑘 ∈ ℙ ) → 0 ∈ ℂ ) |
| 24 |
22 23
|
ifclda |
⊢ ( ⊤ → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
| 25 |
24
|
mptru |
⊢ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ |
| 26 |
|
eleq1w |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑚 = 𝑘 → ( 1 / 𝑚 ) = ( 1 / 𝑘 ) ) |
| 28 |
26 27
|
ifbieq1d |
⊢ ( 𝑚 = 𝑘 → if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
| 29 |
28
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) = ( 𝑘 ∈ ℕ ↦ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
| 30 |
29
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) → ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
| 31 |
19 25 30
|
sylancl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ) |
| 32 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 33 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 34 |
32 33
|
eleqtrdi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 35 |
25
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) ∈ ℂ ) |
| 36 |
31 34 35
|
fsumser |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑛 ) if ( 𝑘 ∈ ℙ , ( 1 / 𝑘 ) , 0 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) ‘ 𝑛 ) ) |
| 37 |
18 36
|
eqtrid |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) ‘ 𝑛 ) ) |
| 38 |
37
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( ℙ ∩ ( 1 ... 𝑛 ) ) ( 1 / 𝑘 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) ‘ 𝑛 ) ) |
| 39 |
|
1z |
⊢ 1 ∈ ℤ |
| 40 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 41 |
39 40
|
ax-mp |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) Fn ( ℤ≥ ‘ 1 ) |
| 42 |
33
|
fneq2i |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 43 |
41 42
|
mpbir |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) Fn ℕ |
| 44 |
|
dffn5 |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) ‘ 𝑛 ) ) ) |
| 45 |
43 44
|
mpbi |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) ‘ 𝑛 ) ) |
| 46 |
38 1 45
|
3eqtr4i |
⊢ 𝐹 = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) |
| 47 |
29
|
prmreclem6 |
⊢ ¬ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( 1 / 𝑚 ) , 0 ) ) ) ∈ dom ⇝ |
| 48 |
46 47
|
eqneltri |
⊢ ¬ 𝐹 ∈ dom ⇝ |