| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmrec.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( 1 / n ) , 0 ) ) |
| 2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 3 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 4 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 5 |
4
|
adantl |
|- ( ( T. /\ n e. NN ) -> ( 1 / n ) e. RR ) |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
|
ifcl |
|- ( ( ( 1 / n ) e. RR /\ 0 e. RR ) -> if ( n e. Prime , ( 1 / n ) , 0 ) e. RR ) |
| 8 |
5 6 7
|
sylancl |
|- ( ( T. /\ n e. NN ) -> if ( n e. Prime , ( 1 / n ) , 0 ) e. RR ) |
| 9 |
8 1
|
fmptd |
|- ( T. -> F : NN --> RR ) |
| 10 |
9
|
ffvelcdmda |
|- ( ( T. /\ j e. NN ) -> ( F ` j ) e. RR ) |
| 11 |
2 3 10
|
serfre |
|- ( T. -> seq 1 ( + , F ) : NN --> RR ) |
| 12 |
11
|
mptru |
|- seq 1 ( + , F ) : NN --> RR |
| 13 |
|
frn |
|- ( seq 1 ( + , F ) : NN --> RR -> ran seq 1 ( + , F ) C_ RR ) |
| 14 |
12 13
|
mp1i |
|- ( seq 1 ( + , F ) e. dom ~~> -> ran seq 1 ( + , F ) C_ RR ) |
| 15 |
|
1nn |
|- 1 e. NN |
| 16 |
12
|
fdmi |
|- dom seq 1 ( + , F ) = NN |
| 17 |
15 16
|
eleqtrri |
|- 1 e. dom seq 1 ( + , F ) |
| 18 |
|
ne0i |
|- ( 1 e. dom seq 1 ( + , F ) -> dom seq 1 ( + , F ) =/= (/) ) |
| 19 |
|
dm0rn0 |
|- ( dom seq 1 ( + , F ) = (/) <-> ran seq 1 ( + , F ) = (/) ) |
| 20 |
19
|
necon3bii |
|- ( dom seq 1 ( + , F ) =/= (/) <-> ran seq 1 ( + , F ) =/= (/) ) |
| 21 |
18 20
|
sylib |
|- ( 1 e. dom seq 1 ( + , F ) -> ran seq 1 ( + , F ) =/= (/) ) |
| 22 |
17 21
|
mp1i |
|- ( seq 1 ( + , F ) e. dom ~~> -> ran seq 1 ( + , F ) =/= (/) ) |
| 23 |
|
1zzd |
|- ( seq 1 ( + , F ) e. dom ~~> -> 1 e. ZZ ) |
| 24 |
|
climdm |
|- ( seq 1 ( + , F ) e. dom ~~> <-> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
| 25 |
24
|
biimpi |
|- ( seq 1 ( + , F ) e. dom ~~> -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
| 26 |
12
|
a1i |
|- ( seq 1 ( + , F ) e. dom ~~> -> seq 1 ( + , F ) : NN --> RR ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) e. RR ) |
| 28 |
2 23 25 27
|
climrecl |
|- ( seq 1 ( + , F ) e. dom ~~> -> ( ~~> ` seq 1 ( + , F ) ) e. RR ) |
| 29 |
|
simpr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> k e. NN ) |
| 30 |
25
|
adantr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> seq 1 ( + , F ) ~~> ( ~~> ` seq 1 ( + , F ) ) ) |
| 31 |
|
eleq1w |
|- ( n = j -> ( n e. Prime <-> j e. Prime ) ) |
| 32 |
|
oveq2 |
|- ( n = j -> ( 1 / n ) = ( 1 / j ) ) |
| 33 |
31 32
|
ifbieq1d |
|- ( n = j -> if ( n e. Prime , ( 1 / n ) , 0 ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 34 |
|
prmnn |
|- ( j e. Prime -> j e. NN ) |
| 35 |
34
|
adantl |
|- ( ( T. /\ j e. Prime ) -> j e. NN ) |
| 36 |
35
|
nnrecred |
|- ( ( T. /\ j e. Prime ) -> ( 1 / j ) e. RR ) |
| 37 |
6
|
a1i |
|- ( ( T. /\ -. j e. Prime ) -> 0 e. RR ) |
| 38 |
36 37
|
ifclda |
|- ( T. -> if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 39 |
38
|
mptru |
|- if ( j e. Prime , ( 1 / j ) , 0 ) e. RR |
| 40 |
39
|
elexi |
|- if ( j e. Prime , ( 1 / j ) , 0 ) e. _V |
| 41 |
33 1 40
|
fvmpt |
|- ( j e. NN -> ( F ` j ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 42 |
41
|
adantl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> ( F ` j ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 43 |
39
|
a1i |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 44 |
42 43
|
eqeltrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> ( F ` j ) e. RR ) |
| 45 |
44
|
adantlr |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. NN ) -> ( F ` j ) e. RR ) |
| 46 |
|
nnrp |
|- ( j e. NN -> j e. RR+ ) |
| 47 |
46
|
adantl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> j e. RR+ ) |
| 48 |
47
|
rpreccld |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> ( 1 / j ) e. RR+ ) |
| 49 |
48
|
rpge0d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> 0 <_ ( 1 / j ) ) |
| 50 |
|
0le0 |
|- 0 <_ 0 |
| 51 |
|
breq2 |
|- ( ( 1 / j ) = if ( j e. Prime , ( 1 / j ) , 0 ) -> ( 0 <_ ( 1 / j ) <-> 0 <_ if ( j e. Prime , ( 1 / j ) , 0 ) ) ) |
| 52 |
|
breq2 |
|- ( 0 = if ( j e. Prime , ( 1 / j ) , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( j e. Prime , ( 1 / j ) , 0 ) ) ) |
| 53 |
51 52
|
ifboth |
|- ( ( 0 <_ ( 1 / j ) /\ 0 <_ 0 ) -> 0 <_ if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 54 |
49 50 53
|
sylancl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> 0 <_ if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 55 |
54 42
|
breqtrrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ j e. NN ) -> 0 <_ ( F ` j ) ) |
| 56 |
55
|
adantlr |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. NN ) -> 0 <_ ( F ` j ) ) |
| 57 |
2 29 30 45 56
|
climserle |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) |
| 58 |
57
|
ralrimiva |
|- ( seq 1 ( + , F ) e. dom ~~> -> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) |
| 59 |
|
brralrspcev |
|- ( ( ( ~~> ` seq 1 ( + , F ) ) e. RR /\ A. k e. NN ( seq 1 ( + , F ) ` k ) <_ ( ~~> ` seq 1 ( + , F ) ) ) -> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) |
| 60 |
28 58 59
|
syl2anc |
|- ( seq 1 ( + , F ) e. dom ~~> -> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) |
| 61 |
|
ffn |
|- ( seq 1 ( + , F ) : NN --> RR -> seq 1 ( + , F ) Fn NN ) |
| 62 |
|
breq1 |
|- ( z = ( seq 1 ( + , F ) ` k ) -> ( z <_ x <-> ( seq 1 ( + , F ) ` k ) <_ x ) ) |
| 63 |
62
|
ralrn |
|- ( seq 1 ( + , F ) Fn NN -> ( A. z e. ran seq 1 ( + , F ) z <_ x <-> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) ) |
| 64 |
12 61 63
|
mp2b |
|- ( A. z e. ran seq 1 ( + , F ) z <_ x <-> A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) |
| 65 |
64
|
rexbii |
|- ( E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x <-> E. x e. RR A. k e. NN ( seq 1 ( + , F ) ` k ) <_ x ) |
| 66 |
60 65
|
sylibr |
|- ( seq 1 ( + , F ) e. dom ~~> -> E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x ) |
| 67 |
14 22 66
|
suprcld |
|- ( seq 1 ( + , F ) e. dom ~~> -> sup ( ran seq 1 ( + , F ) , RR , < ) e. RR ) |
| 68 |
|
2rp |
|- 2 e. RR+ |
| 69 |
|
rpreccl |
|- ( 2 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
| 70 |
68 69
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
| 71 |
|
ltsubrp |
|- ( ( sup ( ran seq 1 ( + , F ) , RR , < ) e. RR /\ ( 1 / 2 ) e. RR+ ) -> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < sup ( ran seq 1 ( + , F ) , RR , < ) ) |
| 72 |
67 70 71
|
sylancl |
|- ( seq 1 ( + , F ) e. dom ~~> -> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < sup ( ran seq 1 ( + , F ) , RR , < ) ) |
| 73 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 74 |
|
resubcl |
|- ( ( sup ( ran seq 1 ( + , F ) , RR , < ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) e. RR ) |
| 75 |
67 73 74
|
sylancl |
|- ( seq 1 ( + , F ) e. dom ~~> -> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) e. RR ) |
| 76 |
|
suprlub |
|- ( ( ( ran seq 1 ( + , F ) C_ RR /\ ran seq 1 ( + , F ) =/= (/) /\ E. x e. RR A. z e. ran seq 1 ( + , F ) z <_ x ) /\ ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) e. RR ) -> ( ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < sup ( ran seq 1 ( + , F ) , RR , < ) <-> E. y e. ran seq 1 ( + , F ) ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < y ) ) |
| 77 |
14 22 66 75 76
|
syl31anc |
|- ( seq 1 ( + , F ) e. dom ~~> -> ( ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < sup ( ran seq 1 ( + , F ) , RR , < ) <-> E. y e. ran seq 1 ( + , F ) ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < y ) ) |
| 78 |
72 77
|
mpbid |
|- ( seq 1 ( + , F ) e. dom ~~> -> E. y e. ran seq 1 ( + , F ) ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < y ) |
| 79 |
|
breq2 |
|- ( y = ( seq 1 ( + , F ) ` k ) -> ( ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < y <-> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) ) |
| 80 |
79
|
rexrn |
|- ( seq 1 ( + , F ) Fn NN -> ( E. y e. ran seq 1 ( + , F ) ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < y <-> E. k e. NN ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) ) |
| 81 |
12 61 80
|
mp2b |
|- ( E. y e. ran seq 1 ( + , F ) ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < y <-> E. k e. NN ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) |
| 82 |
78 81
|
sylib |
|- ( seq 1 ( + , F ) e. dom ~~> -> E. k e. NN ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) |
| 83 |
|
2re |
|- 2 e. RR |
| 84 |
|
2nn |
|- 2 e. NN |
| 85 |
|
nnmulcl |
|- ( ( 2 e. NN /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 86 |
84 29 85
|
sylancr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 x. k ) e. NN ) |
| 87 |
86
|
peano2nnd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN ) |
| 88 |
87
|
nnnn0d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN0 ) |
| 89 |
|
reexpcl |
|- ( ( 2 e. RR /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( 2 ^ ( ( 2 x. k ) + 1 ) ) e. RR ) |
| 90 |
83 88 89
|
sylancr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( ( 2 x. k ) + 1 ) ) e. RR ) |
| 91 |
90
|
ltnrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> -. ( 2 ^ ( ( 2 x. k ) + 1 ) ) < ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) |
| 92 |
29
|
adantr |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) -> k e. NN ) |
| 93 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 94 |
93
|
adantl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( k + 1 ) e. NN ) |
| 95 |
94
|
nnnn0d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( k + 1 ) e. NN0 ) |
| 96 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( k + 1 ) e. NN0 ) -> ( 2 ^ ( k + 1 ) ) e. NN ) |
| 97 |
84 95 96
|
sylancr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( k + 1 ) ) e. NN ) |
| 98 |
97
|
nnsqcld |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 ^ ( k + 1 ) ) ^ 2 ) e. NN ) |
| 99 |
98
|
adantr |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) -> ( ( 2 ^ ( k + 1 ) ) ^ 2 ) e. NN ) |
| 100 |
|
breq1 |
|- ( p = w -> ( p || r <-> w || r ) ) |
| 101 |
100
|
notbid |
|- ( p = w -> ( -. p || r <-> -. w || r ) ) |
| 102 |
101
|
cbvralvw |
|- ( A. p e. ( Prime \ ( 1 ... k ) ) -. p || r <-> A. w e. ( Prime \ ( 1 ... k ) ) -. w || r ) |
| 103 |
|
breq2 |
|- ( r = n -> ( w || r <-> w || n ) ) |
| 104 |
103
|
notbid |
|- ( r = n -> ( -. w || r <-> -. w || n ) ) |
| 105 |
104
|
ralbidv |
|- ( r = n -> ( A. w e. ( Prime \ ( 1 ... k ) ) -. w || r <-> A. w e. ( Prime \ ( 1 ... k ) ) -. w || n ) ) |
| 106 |
102 105
|
bitrid |
|- ( r = n -> ( A. p e. ( Prime \ ( 1 ... k ) ) -. p || r <-> A. w e. ( Prime \ ( 1 ... k ) ) -. w || n ) ) |
| 107 |
106
|
cbvrabv |
|- { r e. ( 1 ... ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) | A. p e. ( Prime \ ( 1 ... k ) ) -. p || r } = { n e. ( 1 ... ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) | A. w e. ( Prime \ ( 1 ... k ) ) -. w || n } |
| 108 |
|
simpll |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) -> seq 1 ( + , F ) e. dom ~~> ) |
| 109 |
|
eleq1w |
|- ( m = j -> ( m e. Prime <-> j e. Prime ) ) |
| 110 |
|
oveq2 |
|- ( m = j -> ( 1 / m ) = ( 1 / j ) ) |
| 111 |
109 110
|
ifbieq1d |
|- ( m = j -> if ( m e. Prime , ( 1 / m ) , 0 ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 112 |
111
|
cbvsumv |
|- sum_ m e. ( ZZ>= ` ( k + 1 ) ) if ( m e. Prime , ( 1 / m ) , 0 ) = sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) |
| 113 |
|
simpr |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) -> sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) |
| 114 |
112 113
|
eqbrtrid |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) -> sum_ m e. ( ZZ>= ` ( k + 1 ) ) if ( m e. Prime , ( 1 / m ) , 0 ) < ( 1 / 2 ) ) |
| 115 |
|
eqid |
|- ( w e. NN |-> { n e. ( 1 ... ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) | ( w e. Prime /\ w || n ) } ) = ( w e. NN |-> { n e. ( 1 ... ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) | ( w e. Prime /\ w || n ) } ) |
| 116 |
1 92 99 107 108 114 115
|
prmreclem5 |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) ) -> ( ( ( 2 ^ ( k + 1 ) ) ^ 2 ) / 2 ) < ( ( 2 ^ k ) x. ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) ) ) |
| 117 |
116
|
ex |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) -> ( ( ( 2 ^ ( k + 1 ) ) ^ 2 ) / 2 ) < ( ( 2 ^ k ) x. ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) ) ) ) |
| 118 |
|
eqid |
|- ( ZZ>= ` ( k + 1 ) ) = ( ZZ>= ` ( k + 1 ) ) |
| 119 |
94
|
nnzd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( k + 1 ) e. ZZ ) |
| 120 |
|
eluznn |
|- ( ( ( k + 1 ) e. NN /\ j e. ( ZZ>= ` ( k + 1 ) ) ) -> j e. NN ) |
| 121 |
94 120
|
sylan |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. ( ZZ>= ` ( k + 1 ) ) ) -> j e. NN ) |
| 122 |
121 41
|
syl |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. ( ZZ>= ` ( k + 1 ) ) ) -> ( F ` j ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 123 |
39
|
a1i |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. ( ZZ>= ` ( k + 1 ) ) ) -> if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 124 |
|
simpl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> seq 1 ( + , F ) e. dom ~~> ) |
| 125 |
41
|
adantl |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. NN ) -> ( F ` j ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 126 |
39
|
recni |
|- if ( j e. Prime , ( 1 / j ) , 0 ) e. CC |
| 127 |
126
|
a1i |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. NN ) -> if ( j e. Prime , ( 1 / j ) , 0 ) e. CC ) |
| 128 |
125 127
|
eqeltrd |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. NN ) -> ( F ` j ) e. CC ) |
| 129 |
2 94 128
|
iserex |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( seq 1 ( + , F ) e. dom ~~> <-> seq ( k + 1 ) ( + , F ) e. dom ~~> ) ) |
| 130 |
124 129
|
mpbid |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> seq ( k + 1 ) ( + , F ) e. dom ~~> ) |
| 131 |
118 119 122 123 130
|
isumrecl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 132 |
73
|
a1i |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 1 / 2 ) e. RR ) |
| 133 |
|
elfznn |
|- ( j e. ( 1 ... k ) -> j e. NN ) |
| 134 |
133
|
adantl |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> j e. NN ) |
| 135 |
134 41
|
syl |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> ( F ` j ) = if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 136 |
29 2
|
eleqtrdi |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 137 |
126
|
a1i |
|- ( ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) /\ j e. ( 1 ... k ) ) -> if ( j e. Prime , ( 1 / j ) , 0 ) e. CC ) |
| 138 |
135 136 137
|
fsumser |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) = ( seq 1 ( + , F ) ` k ) ) |
| 139 |
138 27
|
eqeltrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 140 |
131 132 139
|
ltadd2d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) <-> ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) ) < ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 141 |
2 118 94 125 127 124
|
isumsplit |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) = ( sum_ j e. ( 1 ... ( ( k + 1 ) - 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) + sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) ) ) |
| 142 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 143 |
142
|
adantl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> k e. CC ) |
| 144 |
|
ax-1cn |
|- 1 e. CC |
| 145 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
| 146 |
143 144 145
|
sylancl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( k + 1 ) - 1 ) = k ) |
| 147 |
146
|
oveq2d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 1 ... ( ( k + 1 ) - 1 ) ) = ( 1 ... k ) ) |
| 148 |
147
|
sumeq1d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. ( 1 ... ( ( k + 1 ) - 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) = sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) ) |
| 149 |
148
|
oveq1d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. ( 1 ... ( ( k + 1 ) - 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) + sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) ) = ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) ) ) |
| 150 |
141 149
|
eqtrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) = ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) ) ) |
| 151 |
150
|
breq1d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) < ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + ( 1 / 2 ) ) <-> ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) ) < ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 152 |
140 151
|
bitr4d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) <-> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) < ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 153 |
|
eqid |
|- seq 1 ( + , F ) = seq 1 ( + , F ) |
| 154 |
2 153 23 42 43 54 60
|
isumsup |
|- ( seq 1 ( + , F ) e. dom ~~> -> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) = sup ( ran seq 1 ( + , F ) , RR , < ) ) |
| 155 |
154 67
|
eqeltrd |
|- ( seq 1 ( + , F ) e. dom ~~> -> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 156 |
155
|
adantr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) e. RR ) |
| 157 |
156 132 139
|
ltsubaddd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) - ( 1 / 2 ) ) < sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) <-> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) < ( sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) + ( 1 / 2 ) ) ) ) |
| 158 |
154
|
adantr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) = sup ( ran seq 1 ( + , F ) , RR , < ) ) |
| 159 |
158
|
oveq1d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) - ( 1 / 2 ) ) = ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) ) |
| 160 |
159 138
|
breq12d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( sum_ j e. NN if ( j e. Prime , ( 1 / j ) , 0 ) - ( 1 / 2 ) ) < sum_ j e. ( 1 ... k ) if ( j e. Prime , ( 1 / j ) , 0 ) <-> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) ) |
| 161 |
152 157 160
|
3bitr2d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sum_ j e. ( ZZ>= ` ( k + 1 ) ) if ( j e. Prime , ( 1 / j ) , 0 ) < ( 1 / 2 ) <-> ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) ) |
| 162 |
|
2cn |
|- 2 e. CC |
| 163 |
162
|
a1i |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> 2 e. CC ) |
| 164 |
144
|
a1i |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> 1 e. CC ) |
| 165 |
163 143 164
|
adddid |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 x. ( k + 1 ) ) = ( ( 2 x. k ) + ( 2 x. 1 ) ) ) |
| 166 |
94
|
nncnd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( k + 1 ) e. CC ) |
| 167 |
|
mulcom |
|- ( ( ( k + 1 ) e. CC /\ 2 e. CC ) -> ( ( k + 1 ) x. 2 ) = ( 2 x. ( k + 1 ) ) ) |
| 168 |
166 162 167
|
sylancl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( k + 1 ) x. 2 ) = ( 2 x. ( k + 1 ) ) ) |
| 169 |
86
|
nncnd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 x. k ) e. CC ) |
| 170 |
169 164 164
|
addassd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( ( 2 x. k ) + 1 ) + 1 ) = ( ( 2 x. k ) + ( 1 + 1 ) ) ) |
| 171 |
144
|
2timesi |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
| 172 |
171
|
oveq2i |
|- ( ( 2 x. k ) + ( 2 x. 1 ) ) = ( ( 2 x. k ) + ( 1 + 1 ) ) |
| 173 |
170 172
|
eqtr4di |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( ( 2 x. k ) + 1 ) + 1 ) = ( ( 2 x. k ) + ( 2 x. 1 ) ) ) |
| 174 |
165 168 173
|
3eqtr4d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( k + 1 ) x. 2 ) = ( ( ( 2 x. k ) + 1 ) + 1 ) ) |
| 175 |
174
|
oveq2d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( ( k + 1 ) x. 2 ) ) = ( 2 ^ ( ( ( 2 x. k ) + 1 ) + 1 ) ) ) |
| 176 |
|
2nn0 |
|- 2 e. NN0 |
| 177 |
176
|
a1i |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> 2 e. NN0 ) |
| 178 |
163 177 95
|
expmuld |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( ( k + 1 ) x. 2 ) ) = ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) |
| 179 |
|
expp1 |
|- ( ( 2 e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( 2 ^ ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) ) |
| 180 |
162 88 179
|
sylancr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( ( ( 2 x. k ) + 1 ) + 1 ) ) = ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) ) |
| 181 |
175 178 180
|
3eqtr3d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 ^ ( k + 1 ) ) ^ 2 ) = ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) ) |
| 182 |
181
|
oveq1d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( ( 2 ^ ( k + 1 ) ) ^ 2 ) / 2 ) = ( ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) / 2 ) ) |
| 183 |
|
expcl |
|- ( ( 2 e. CC /\ ( ( 2 x. k ) + 1 ) e. NN0 ) -> ( 2 ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 184 |
162 88 183
|
sylancr |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( ( 2 x. k ) + 1 ) ) e. CC ) |
| 185 |
|
2ne0 |
|- 2 =/= 0 |
| 186 |
|
divcan4 |
|- ( ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) / 2 ) = ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) |
| 187 |
162 185 186
|
mp3an23 |
|- ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) e. CC -> ( ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) / 2 ) = ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) |
| 188 |
184 187
|
syl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( ( 2 ^ ( ( 2 x. k ) + 1 ) ) x. 2 ) / 2 ) = ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) |
| 189 |
182 188
|
eqtrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( ( 2 ^ ( k + 1 ) ) ^ 2 ) / 2 ) = ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) |
| 190 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 191 |
190
|
adantl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> k e. NN0 ) |
| 192 |
163 95 191
|
expaddd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( k + ( k + 1 ) ) ) = ( ( 2 ^ k ) x. ( 2 ^ ( k + 1 ) ) ) ) |
| 193 |
143
|
2timesd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) |
| 194 |
193
|
oveq1d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) = ( ( k + k ) + 1 ) ) |
| 195 |
143 143 164
|
addassd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( k + k ) + 1 ) = ( k + ( k + 1 ) ) ) |
| 196 |
194 195
|
eqtrd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) = ( k + ( k + 1 ) ) ) |
| 197 |
196
|
oveq2d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( ( 2 x. k ) + 1 ) ) = ( 2 ^ ( k + ( k + 1 ) ) ) ) |
| 198 |
97
|
nnrpd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( 2 ^ ( k + 1 ) ) e. RR+ ) |
| 199 |
198
|
rprege0d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 ^ ( k + 1 ) ) e. RR /\ 0 <_ ( 2 ^ ( k + 1 ) ) ) ) |
| 200 |
|
sqrtsq |
|- ( ( ( 2 ^ ( k + 1 ) ) e. RR /\ 0 <_ ( 2 ^ ( k + 1 ) ) ) -> ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) = ( 2 ^ ( k + 1 ) ) ) |
| 201 |
199 200
|
syl |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) = ( 2 ^ ( k + 1 ) ) ) |
| 202 |
201
|
oveq2d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 ^ k ) x. ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) ) = ( ( 2 ^ k ) x. ( 2 ^ ( k + 1 ) ) ) ) |
| 203 |
192 197 202
|
3eqtr4rd |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( 2 ^ k ) x. ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) ) = ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) |
| 204 |
189 203
|
breq12d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( ( ( 2 ^ ( k + 1 ) ) ^ 2 ) / 2 ) < ( ( 2 ^ k ) x. ( sqrt ` ( ( 2 ^ ( k + 1 ) ) ^ 2 ) ) ) <-> ( 2 ^ ( ( 2 x. k ) + 1 ) ) < ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 205 |
117 161 204
|
3imtr3d |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> ( ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) -> ( 2 ^ ( ( 2 x. k ) + 1 ) ) < ( 2 ^ ( ( 2 x. k ) + 1 ) ) ) ) |
| 206 |
91 205
|
mtod |
|- ( ( seq 1 ( + , F ) e. dom ~~> /\ k e. NN ) -> -. ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) |
| 207 |
206
|
nrexdv |
|- ( seq 1 ( + , F ) e. dom ~~> -> -. E. k e. NN ( sup ( ran seq 1 ( + , F ) , RR , < ) - ( 1 / 2 ) ) < ( seq 1 ( + , F ) ` k ) ) |
| 208 |
82 207
|
pm2.65i |
|- -. seq 1 ( + , F ) e. dom ~~> |