Metamath Proof Explorer


Theorem divcan4

Description: A cancellation law for division. (Contributed by NM, 8-Feb-2005)

Ref Expression
Assertion divcan4 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 mulcom ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
2 1 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) )
3 2 oveq1d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = ( ( 𝐵 · 𝐴 ) / 𝐵 ) )
4 divcan3 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐵 · 𝐴 ) / 𝐵 ) = 𝐴 )
5 3 4 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐵 ) = 𝐴 )