Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcvg4.s |
⊢ 𝑆 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
fsumcvg4.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
fsumcvg4.c |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
4 |
|
fsumcvg4.f |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∈ Fin ) |
5 |
|
ffun |
⊢ ( 𝐹 : 𝑆 ⟶ ℂ → Fun 𝐹 ) |
6 |
|
difpreima |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) = ( ( ◡ 𝐹 “ ℂ ) ∖ ( ◡ 𝐹 “ { 0 } ) ) ) |
7 |
3 5 6
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) = ( ( ◡ 𝐹 “ ℂ ) ∖ ( ◡ 𝐹 “ { 0 } ) ) ) |
8 |
|
difss |
⊢ ( ( ◡ 𝐹 “ ℂ ) ∖ ( ◡ 𝐹 “ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ℂ ) |
9 |
7 8
|
eqsstrdi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ℂ ) ) |
10 |
|
fimacnv |
⊢ ( 𝐹 : 𝑆 ⟶ ℂ → ( ◡ 𝐹 “ ℂ ) = 𝑆 ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ℂ ) = 𝑆 ) |
12 |
9 11
|
sseqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ⊆ 𝑆 ) |
13 |
|
exmidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∨ ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) ) |
14 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) |
15 |
14
|
biantru |
⊢ ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) ) |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) ) ) |
17 |
1
|
fvexi |
⊢ 𝑆 ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
19
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
21 |
|
eqid |
⊢ ( ℂ ∖ { 0 } ) = ( ℂ ∖ { 0 } ) |
22 |
21
|
ffs2 |
⊢ ( ( 𝑆 ∈ V ∧ 0 ∈ ℕ0 ∧ 𝐹 : 𝑆 ⟶ ℂ ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) |
23 |
18 20 3 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) |
24 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) |
25 |
|
suppvalfn |
⊢ ( ( 𝐹 Fn 𝑆 ∧ 𝑆 ∈ V ∧ 0 ∈ ℕ0 ) → ( 𝐹 supp 0 ) = { 𝑘 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
26 |
24 18 20 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = { 𝑘 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
27 |
23 26
|
eqtr3d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) = { 𝑘 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) |
28 |
27
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ↔ 𝑘 ∈ { 𝑘 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ) ) |
29 |
|
rabid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝑆 ∣ ( 𝐹 ‘ 𝑘 ) ≠ 0 } ↔ ( 𝑘 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
30 |
28 29
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑘 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) ) |
31 |
30
|
baibd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝐹 ‘ 𝑘 ) ≠ 0 ) ) |
32 |
31
|
necon2bbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) = 0 ↔ ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) ) |
33 |
32
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) → ( 𝐹 ‘ 𝑘 ) = 0 ) ) |
34 |
33
|
pm4.71d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ↔ ( ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = 0 ) ) ) |
35 |
16 34
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∨ ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) ↔ ( ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) ∨ ( ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = 0 ) ) ) ) |
36 |
13 35
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) ∨ ( ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = 0 ) ) ) |
37 |
|
eqif |
⊢ ( ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ↔ ( ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) ∨ ( ¬ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ∧ ( 𝐹 ‘ 𝑘 ) = 0 ) ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
39 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) → 𝑘 ∈ 𝑆 ) |
40 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
41 |
39 40
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ◡ 𝐹 “ ( ℂ ∖ { 0 } ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
42 |
1 2 4 12 38 41
|
fsumcvg3 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |