| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfneige0.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 2 |
|
0red |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑦 < 0 ) → 0 ∈ ℝ ) |
| 3 |
|
simpllr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) ∧ ¬ 𝑦 < 0 ) → 𝑦 ∈ ℝ ) |
| 4 |
2 3
|
ifclda |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → if ( 𝑦 < 0 , 0 , 𝑦 ) ∈ ℝ ) |
| 5 |
|
ovif |
⊢ ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) = if ( 𝑦 < 0 , ( 0 (,] +∞ ) , ( 𝑦 (,] +∞ ) ) |
| 6 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
7
|
a1i |
⊢ ( 𝑦 ∈ ℝ → 0 ∈ ℝ* ) |
| 9 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 10 |
9
|
a1i |
⊢ ( 𝑦 ∈ ℝ → +∞ ∈ ℝ* ) |
| 11 |
|
iocinif |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) = if ( 𝑦 < 0 , ( 0 (,] +∞ ) , ( 𝑦 (,] +∞ ) ) ) |
| 12 |
6 8 10 11
|
syl3anc |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) = if ( 𝑦 < 0 , ( 0 (,] +∞ ) , ( 𝑦 (,] +∞ ) ) ) |
| 13 |
5 12
|
eqtr4id |
⊢ ( 𝑦 ∈ ℝ → ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) = ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) = ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 15 |
|
iocssicc |
⊢ ( 0 (,] +∞ ) ⊆ ( 0 [,] +∞ ) |
| 16 |
|
sslin |
⊢ ( ( 0 (,] +∞ ) ⊆ ( 0 [,] +∞ ) → ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( ( 𝑦 (,] +∞ ) ∩ ( 0 [,] +∞ ) ) ) |
| 17 |
15 16
|
mp1i |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( ( 𝑦 (,] +∞ ) ∩ ( 0 [,] +∞ ) ) ) |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) |
| 19 |
|
ssin |
⊢ ( ( ( 𝑦 (,] +∞ ) ⊆ 𝐴 ∧ ( 𝑦 (,] +∞ ) ⊆ ( 0 (,] +∞ ) ) ↔ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) |
| 20 |
19
|
biimpri |
⊢ ( ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) → ( ( 𝑦 (,] +∞ ) ⊆ 𝐴 ∧ ( 𝑦 (,] +∞ ) ⊆ ( 0 (,] +∞ ) ) ) |
| 21 |
20
|
simpld |
⊢ ( ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) → ( 𝑦 (,] +∞ ) ⊆ 𝐴 ) |
| 22 |
|
ssinss1 |
⊢ ( ( 𝑦 (,] +∞ ) ⊆ 𝐴 → ( ( 𝑦 (,] +∞ ) ∩ ( 0 [,] +∞ ) ) ⊆ 𝐴 ) |
| 23 |
18 21 22
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ( ( 𝑦 (,] +∞ ) ∩ ( 0 [,] +∞ ) ) ⊆ 𝐴 ) |
| 24 |
17 23
|
sstrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ( ( 𝑦 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ 𝐴 ) |
| 25 |
14 24
|
eqsstrd |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) ⊆ 𝐴 ) |
| 26 |
|
oveq1 |
⊢ ( 𝑥 = if ( 𝑦 < 0 , 0 , 𝑦 ) → ( 𝑥 (,] +∞ ) = ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) ) |
| 27 |
26
|
sseq1d |
⊢ ( 𝑥 = if ( 𝑦 < 0 , 0 , 𝑦 ) → ( ( 𝑥 (,] +∞ ) ⊆ 𝐴 ↔ ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) ⊆ 𝐴 ) ) |
| 28 |
27
|
rspcev |
⊢ ( ( if ( 𝑦 < 0 , 0 , 𝑦 ) ∈ ℝ ∧ ( if ( 𝑦 < 0 , 0 , 𝑦 ) (,] +∞ ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 29 |
4 25 28
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 30 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
| 31 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 32 |
|
resttopon |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 33 |
30 31 32
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 34 |
33
|
topontopi |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Top |
| 35 |
34
|
a1i |
⊢ ( 𝐴 ∈ 𝐽 → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Top ) |
| 36 |
|
ovex |
⊢ ( 0 (,] +∞ ) ∈ V |
| 37 |
36
|
a1i |
⊢ ( 𝐴 ∈ 𝐽 → ( 0 (,] +∞ ) ∈ V ) |
| 38 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 39 |
1 38
|
eqtri |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 40 |
39
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐽 ↔ 𝐴 ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
| 41 |
40
|
biimpi |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
| 42 |
|
elrestr |
⊢ ( ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ Top ∧ ( 0 (,] +∞ ) ∈ V ∧ 𝐴 ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) → ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t ( 0 (,] +∞ ) ) ) |
| 43 |
35 37 41 42
|
syl3anc |
⊢ ( 𝐴 ∈ 𝐽 → ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t ( 0 (,] +∞ ) ) ) |
| 44 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
| 45 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 46 |
|
restabs |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ( 0 (,] +∞ ) ⊆ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t ( 0 (,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 (,] +∞ ) ) ) |
| 47 |
44 15 45 46
|
mp3an |
⊢ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t ( 0 (,] +∞ ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 (,] +∞ ) ) |
| 48 |
43 47
|
eleqtrdi |
⊢ ( 𝐴 ∈ 𝐽 → ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 (,] +∞ ) ) ) |
| 49 |
44
|
a1i |
⊢ ( 𝐴 ∈ 𝐽 → ( ordTop ‘ ≤ ) ∈ Top ) |
| 50 |
|
iocpnfordt |
⊢ ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) |
| 51 |
50
|
a1i |
⊢ ( 𝐴 ∈ 𝐽 → ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) |
| 52 |
|
ssidd |
⊢ ( 𝐴 ∈ 𝐽 → ( 0 (,] +∞ ) ⊆ ( 0 (,] +∞ ) ) |
| 53 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 (,] +∞ ) |
| 54 |
53
|
a1i |
⊢ ( 𝐴 ∈ 𝐽 → ( 𝐴 ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 (,] +∞ ) ) |
| 55 |
|
restopnb |
⊢ ( ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ( 0 (,] +∞ ) ∈ V ) ∧ ( ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ∧ ( 0 (,] +∞ ) ⊆ ( 0 (,] +∞ ) ∧ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 (,] +∞ ) ) ) → ( ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ↔ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 (,] +∞ ) ) ) ) |
| 56 |
49 37 51 52 54 55
|
syl23anc |
⊢ ( 𝐴 ∈ 𝐽 → ( ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ↔ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 (,] +∞ ) ) ) ) |
| 57 |
48 56
|
mpbird |
⊢ ( 𝐴 ∈ 𝐽 → ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) → ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ) |
| 59 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) → +∞ ∈ 𝐴 ) |
| 60 |
|
0ltpnf |
⊢ 0 < +∞ |
| 61 |
|
ubioc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → +∞ ∈ ( 0 (,] +∞ ) ) |
| 62 |
7 9 60 61
|
mp3an |
⊢ +∞ ∈ ( 0 (,] +∞ ) |
| 63 |
62
|
a1i |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) → +∞ ∈ ( 0 (,] +∞ ) ) |
| 64 |
59 63
|
elind |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) → +∞ ∈ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) |
| 65 |
|
pnfnei |
⊢ ( ( ( 𝐴 ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) → ∃ 𝑦 ∈ ℝ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) |
| 66 |
58 64 65
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) → ∃ 𝑦 ∈ ℝ ( 𝑦 (,] +∞ ) ⊆ ( 𝐴 ∩ ( 0 (,] +∞ ) ) ) |
| 67 |
29 66
|
r19.29a |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |