| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exmid |
⊢ ( 𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵 ) |
| 2 |
|
xrltle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 3 |
2
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 4 |
3
|
3adantl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 5 |
|
iocinioc2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |
| 6 |
4 5
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) |
| 7 |
6
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) ) |
| 8 |
7
|
ancld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ( 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) ) ) |
| 9 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 10 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
| 12 |
|
xrlenlt |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 13 |
12
|
biimpar |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 14 |
9 10 11 13
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 15 |
|
3ancoma |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ) |
| 16 |
|
incom |
⊢ ( ( 𝐵 (,] 𝐶 ) ∩ ( 𝐴 (,] 𝐶 ) ) = ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) |
| 17 |
|
iocinioc2 |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐵 (,] 𝐶 ) ∩ ( 𝐴 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) |
| 18 |
16 17
|
eqtr3id |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) |
| 19 |
15 18
|
sylanbr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ 𝐵 ≤ 𝐴 ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) |
| 20 |
14 19
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) |
| 21 |
20
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ¬ 𝐴 < 𝐵 → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) ) |
| 22 |
21
|
ancld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ¬ 𝐴 < 𝐵 → ( ¬ 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) ) ) |
| 23 |
8 22
|
orim12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵 ) → ( ( 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) ∨ ( ¬ 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) ) ) ) |
| 24 |
1 23
|
mpi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) ∨ ( ¬ 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) ) ) |
| 25 |
|
eqif |
⊢ ( ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 (,] 𝐶 ) , ( 𝐴 (,] 𝐶 ) ) ↔ ( ( 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐵 (,] 𝐶 ) ) ∨ ( ¬ 𝐴 < 𝐵 ∧ ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = ( 𝐴 (,] 𝐶 ) ) ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 (,] 𝐶 ) ∩ ( 𝐵 (,] 𝐶 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 (,] 𝐶 ) , ( 𝐴 (,] 𝐶 ) ) ) |