| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exmid |
|- ( A < B \/ -. A < B ) |
| 2 |
|
xrltle |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> A <_ B ) ) |
| 3 |
2
|
imp |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ A < B ) -> A <_ B ) |
| 4 |
3
|
3adantl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) -> A <_ B ) |
| 5 |
|
iocinioc2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A <_ B ) -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) |
| 6 |
4 5
|
syldan |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ A < B ) -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) |
| 7 |
6
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A < B -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) ) |
| 8 |
7
|
ancld |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( A < B -> ( A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) ) ) |
| 9 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ -. A < B ) -> B e. RR* ) |
| 10 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ -. A < B ) -> A e. RR* ) |
| 11 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ -. A < B ) -> -. A < B ) |
| 12 |
|
xrlenlt |
|- ( ( B e. RR* /\ A e. RR* ) -> ( B <_ A <-> -. A < B ) ) |
| 13 |
12
|
biimpar |
|- ( ( ( B e. RR* /\ A e. RR* ) /\ -. A < B ) -> B <_ A ) |
| 14 |
9 10 11 13
|
syl21anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ -. A < B ) -> B <_ A ) |
| 15 |
|
3ancoma |
|- ( ( B e. RR* /\ A e. RR* /\ C e. RR* ) <-> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) |
| 16 |
|
incom |
|- ( ( B (,] C ) i^i ( A (,] C ) ) = ( ( A (,] C ) i^i ( B (,] C ) ) |
| 17 |
|
iocinioc2 |
|- ( ( ( B e. RR* /\ A e. RR* /\ C e. RR* ) /\ B <_ A ) -> ( ( B (,] C ) i^i ( A (,] C ) ) = ( A (,] C ) ) |
| 18 |
16 17
|
eqtr3id |
|- ( ( ( B e. RR* /\ A e. RR* /\ C e. RR* ) /\ B <_ A ) -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) |
| 19 |
15 18
|
sylanbr |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ B <_ A ) -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) |
| 20 |
14 19
|
syldan |
|- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ -. A < B ) -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) |
| 21 |
20
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -. A < B -> ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) ) |
| 22 |
21
|
ancld |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( -. A < B -> ( -. A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) ) ) |
| 23 |
8 22
|
orim12d |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B \/ -. A < B ) -> ( ( A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) \/ ( -. A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) ) ) ) |
| 24 |
1 23
|
mpi |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) \/ ( -. A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) ) ) |
| 25 |
|
eqif |
|- ( ( ( A (,] C ) i^i ( B (,] C ) ) = if ( A < B , ( B (,] C ) , ( A (,] C ) ) <-> ( ( A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( B (,] C ) ) \/ ( -. A < B /\ ( ( A (,] C ) i^i ( B (,] C ) ) = ( A (,] C ) ) ) ) |
| 26 |
24 25
|
sylibr |
|- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A (,] C ) i^i ( B (,] C ) ) = if ( A < B , ( B (,] C ) , ( A (,] C ) ) ) |