| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmxrge0.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 2 |
|
lmxrge0.6 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
lmxrge0.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 4 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 5 |
|
xrstopn |
⊢ ( ordTop ‘ ≤ ) = ( TopOpen ‘ ℝ*𝑠 ) |
| 6 |
4 5
|
resstopn |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 7 |
1 6
|
eqtr4i |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 8 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
| 9 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 10 |
|
resttopon |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 11 |
8 9 10
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 12 |
7 11
|
eqeltri |
⊢ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 14 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 15 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 16 |
13 14 15 2 3
|
lmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ↔ ( +∞ ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) ) ) |
| 17 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 18 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 19 |
|
0lepnf |
⊢ 0 ≤ +∞ |
| 20 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
| 21 |
17 18 19 20
|
mp3an |
⊢ +∞ ∈ ( 0 [,] +∞ ) |
| 22 |
21
|
biantrur |
⊢ ( ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ↔ ( +∞ ∈ ( 0 [,] +∞ ) ∧ ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) ) |
| 23 |
16 22
|
bitr4di |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ↔ ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) ) |
| 24 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 25 |
18
|
a1i |
⊢ ( 𝑥 ∈ ℝ → +∞ ∈ ℝ* ) |
| 26 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
| 27 |
|
ubioc1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 < +∞ ) → +∞ ∈ ( 𝑥 (,] +∞ ) ) |
| 28 |
24 25 26 27
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ → +∞ ∈ ( 𝑥 (,] +∞ ) ) |
| 29 |
|
0ltpnf |
⊢ 0 < +∞ |
| 30 |
|
ubioc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞ ) → +∞ ∈ ( 0 (,] +∞ ) ) |
| 31 |
17 18 29 30
|
mp3an |
⊢ +∞ ∈ ( 0 (,] +∞ ) |
| 32 |
28 31
|
jctir |
⊢ ( 𝑥 ∈ ℝ → ( +∞ ∈ ( 𝑥 (,] +∞ ) ∧ +∞ ∈ ( 0 (,] +∞ ) ) ) |
| 33 |
|
elin |
⊢ ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ↔ ( +∞ ∈ ( 𝑥 (,] +∞ ) ∧ +∞ ∈ ( 0 (,] +∞ ) ) ) |
| 34 |
32 33
|
sylibr |
⊢ ( 𝑥 ∈ ℝ → +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) → +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 36 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
| 37 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 38 |
|
iocpnfordt |
⊢ ( 𝑥 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) |
| 39 |
|
iocpnfordt |
⊢ ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) |
| 40 |
|
inopn |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ( 𝑥 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ∧ ( 0 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) → ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ) |
| 41 |
36 38 39 40
|
mp3an |
⊢ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) |
| 42 |
|
elrestr |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ Top ∧ ( 0 [,] +∞ ) ∈ V ∧ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ ( ordTop ‘ ≤ ) ) → ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ) |
| 43 |
36 37 41 42
|
mp3an |
⊢ ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) ) ∈ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 44 |
|
inss2 |
⊢ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 (,] +∞ ) |
| 45 |
|
iocssicc |
⊢ ( 0 (,] +∞ ) ⊆ ( 0 [,] +∞ ) |
| 46 |
44 45
|
sstri |
⊢ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 [,] +∞ ) |
| 47 |
|
sseqin2 |
⊢ ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ⊆ ( 0 [,] +∞ ) ↔ ( ( 0 [,] +∞ ) ∩ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 48 |
46 47
|
mpbi |
⊢ ( ( 0 [,] +∞ ) ∩ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) |
| 49 |
|
incom |
⊢ ( ( 0 [,] +∞ ) ∩ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) = ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) ) |
| 50 |
48 49
|
eqtr3i |
⊢ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) = ( ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∩ ( 0 [,] +∞ ) ) |
| 51 |
43 50 7
|
3eltr4i |
⊢ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ 𝐽 |
| 52 |
51
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ∈ 𝐽 ) |
| 53 |
|
eleq2 |
⊢ ( 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ( +∞ ∈ 𝑎 ↔ +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ) |
| 54 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( +∞ ∈ 𝑎 ↔ +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ) |
| 55 |
54
|
biimprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → +∞ ∈ 𝑎 ) ) |
| 56 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝑥 ∈ ℝ ) |
| 57 |
56
|
rexrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝑥 ∈ ℝ* ) |
| 58 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝐴 ∈ 𝑎 ) |
| 59 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 60 |
58 59
|
eleqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝐴 ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) |
| 61 |
|
elin |
⊢ ( 𝐴 ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ↔ ( 𝐴 ∈ ( 𝑥 (,] +∞ ) ∧ 𝐴 ∈ ( 0 (,] +∞ ) ) ) |
| 62 |
61
|
simplbi |
⊢ ( 𝐴 ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) ) |
| 63 |
60 62
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) ) |
| 64 |
|
elioc1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝑥 < 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) |
| 65 |
18 64
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝐴 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 𝑥 < 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) |
| 66 |
65
|
biimpa |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ( 𝑥 (,] +∞ ) ) → ( 𝐴 ∈ ℝ* ∧ 𝑥 < 𝐴 ∧ 𝐴 ≤ +∞ ) ) |
| 67 |
66
|
simp2d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ( 𝑥 (,] +∞ ) ) → 𝑥 < 𝐴 ) |
| 68 |
57 63 67
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝐴 ∈ 𝑎 ) → 𝑥 < 𝐴 ) |
| 69 |
68
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ( 𝐴 ∈ 𝑎 → 𝑥 < 𝐴 ) ) |
| 70 |
69
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) ∧ 𝑙 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑥 < 𝐴 ) ) |
| 71 |
70
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑥 < 𝐴 ) ) |
| 72 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑙 ) ) |
| 73 |
72
|
raleqdv |
⊢ ( 𝑗 = 𝑙 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑥 < 𝐴 ) ) |
| 74 |
73
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ↔ ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑥 < 𝐴 ) |
| 75 |
71 74
|
imbitrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |
| 76 |
55 75
|
imim12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑎 = ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) ) → ( ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) ) |
| 77 |
52 76
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) ) |
| 78 |
77
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) → ( +∞ ∈ ( ( 𝑥 (,] +∞ ) ∩ ( 0 (,] +∞ ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |
| 79 |
35 78
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) |
| 80 |
79
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |
| 81 |
80
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |
| 82 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → 𝜑 ) |
| 83 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → 𝑎 ∈ 𝐽 ) |
| 84 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → +∞ ∈ 𝑎 ) |
| 85 |
1
|
pnfneige0 |
⊢ ( ( 𝑎 ∈ 𝐽 ∧ +∞ ∈ 𝑎 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) |
| 86 |
83 84 85
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) |
| 87 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) |
| 88 |
|
r19.29r |
⊢ ( ( ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑥 ∈ ℝ ( ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |
| 89 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝜑 ) |
| 90 |
|
uznnssnn |
⊢ ( 𝑙 ∈ ℕ → ( ℤ≥ ‘ 𝑙 ) ⊆ ℕ ) |
| 91 |
90
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ( ℤ≥ ‘ 𝑙 ) ⊆ ℕ ) |
| 92 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) |
| 93 |
91 92
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑘 ∈ ℕ ) |
| 94 |
89 93
|
jca |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) |
| 95 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑥 ∈ ℝ ) |
| 96 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) |
| 97 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑥 < 𝐴 ) → ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) |
| 98 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝑥 ∈ ℝ ) |
| 99 |
98
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝑥 ∈ ℝ* ) |
| 100 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
| 101 |
3 100
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 102 |
9 101
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ* ) |
| 103 |
102
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 104 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝑥 < 𝐴 ) |
| 105 |
|
pnfge |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) |
| 106 |
103 105
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝐴 ≤ +∞ ) |
| 107 |
65
|
biimpar |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐴 ∈ ℝ* ∧ 𝑥 < 𝐴 ∧ 𝐴 ≤ +∞ ) ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) ) |
| 108 |
99 103 104 106 107
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) ) |
| 109 |
108
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ ( 𝑥 (,] +∞ ) ) |
| 110 |
97 109
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑥 < 𝐴 ) → 𝐴 ∈ 𝑎 ) |
| 111 |
110
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) → ( 𝑥 < 𝐴 → 𝐴 ∈ 𝑎 ) ) |
| 112 |
94 95 96 111
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ( 𝑥 < 𝐴 → 𝐴 ∈ 𝑎 ) ) |
| 113 |
112
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) ∧ 𝑙 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑥 < 𝐴 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) |
| 114 |
113
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) → ( ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑥 < 𝐴 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) |
| 115 |
74 114
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) |
| 116 |
115
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) |
| 117 |
116
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ( ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) |
| 118 |
88 117
|
syl5 |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) |
| 119 |
118
|
imp |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝑎 ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) |
| 120 |
82 86 87 119
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ∧ +∞ ∈ 𝑎 ) → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) |
| 121 |
120
|
exp31 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐽 ) → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 → ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) ) |
| 122 |
121
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 → ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ) ) |
| 123 |
81 122
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝐽 ( +∞ ∈ 𝑎 → ∃ 𝑙 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑙 ) 𝐴 ∈ 𝑎 ) ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |
| 124 |
23 123
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < 𝐴 ) ) |