| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmxrge0.j |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 2 |
|
lmxrge0.6 |
|- ( ph -> F : NN --> ( 0 [,] +oo ) ) |
| 3 |
|
lmxrge0.7 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = A ) |
| 4 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 5 |
|
xrstopn |
|- ( ordTop ` <_ ) = ( TopOpen ` RR*s ) |
| 6 |
4 5
|
resstopn |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 7 |
1 6
|
eqtr4i |
|- J = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 8 |
|
letopon |
|- ( ordTop ` <_ ) e. ( TopOn ` RR* ) |
| 9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 10 |
|
resttopon |
|- ( ( ( ordTop ` <_ ) e. ( TopOn ` RR* ) /\ ( 0 [,] +oo ) C_ RR* ) -> ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) ) |
| 11 |
8 9 10
|
mp2an |
|- ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) e. ( TopOn ` ( 0 [,] +oo ) ) |
| 12 |
7 11
|
eqeltri |
|- J e. ( TopOn ` ( 0 [,] +oo ) ) |
| 13 |
12
|
a1i |
|- ( ph -> J e. ( TopOn ` ( 0 [,] +oo ) ) ) |
| 14 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 15 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 16 |
13 14 15 2 3
|
lmbrf |
|- ( ph -> ( F ( ~~>t ` J ) +oo <-> ( +oo e. ( 0 [,] +oo ) /\ A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) ) ) |
| 17 |
|
0xr |
|- 0 e. RR* |
| 18 |
|
pnfxr |
|- +oo e. RR* |
| 19 |
|
0lepnf |
|- 0 <_ +oo |
| 20 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
| 21 |
17 18 19 20
|
mp3an |
|- +oo e. ( 0 [,] +oo ) |
| 22 |
21
|
biantrur |
|- ( A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) <-> ( +oo e. ( 0 [,] +oo ) /\ A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) ) |
| 23 |
16 22
|
bitr4di |
|- ( ph -> ( F ( ~~>t ` J ) +oo <-> A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) ) |
| 24 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 25 |
18
|
a1i |
|- ( x e. RR -> +oo e. RR* ) |
| 26 |
|
ltpnf |
|- ( x e. RR -> x < +oo ) |
| 27 |
|
ubioc1 |
|- ( ( x e. RR* /\ +oo e. RR* /\ x < +oo ) -> +oo e. ( x (,] +oo ) ) |
| 28 |
24 25 26 27
|
syl3anc |
|- ( x e. RR -> +oo e. ( x (,] +oo ) ) |
| 29 |
|
0ltpnf |
|- 0 < +oo |
| 30 |
|
ubioc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 < +oo ) -> +oo e. ( 0 (,] +oo ) ) |
| 31 |
17 18 29 30
|
mp3an |
|- +oo e. ( 0 (,] +oo ) |
| 32 |
28 31
|
jctir |
|- ( x e. RR -> ( +oo e. ( x (,] +oo ) /\ +oo e. ( 0 (,] +oo ) ) ) |
| 33 |
|
elin |
|- ( +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) <-> ( +oo e. ( x (,] +oo ) /\ +oo e. ( 0 (,] +oo ) ) ) |
| 34 |
32 33
|
sylibr |
|- ( x e. RR -> +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
| 35 |
34
|
ad2antlr |
|- ( ( ( ph /\ x e. RR ) /\ A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) -> +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
| 36 |
|
letop |
|- ( ordTop ` <_ ) e. Top |
| 37 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
| 38 |
|
iocpnfordt |
|- ( x (,] +oo ) e. ( ordTop ` <_ ) |
| 39 |
|
iocpnfordt |
|- ( 0 (,] +oo ) e. ( ordTop ` <_ ) |
| 40 |
|
inopn |
|- ( ( ( ordTop ` <_ ) e. Top /\ ( x (,] +oo ) e. ( ordTop ` <_ ) /\ ( 0 (,] +oo ) e. ( ordTop ` <_ ) ) -> ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) ) |
| 41 |
36 38 39 40
|
mp3an |
|- ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) |
| 42 |
|
elrestr |
|- ( ( ( ordTop ` <_ ) e. Top /\ ( 0 [,] +oo ) e. _V /\ ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) e. ( ordTop ` <_ ) ) -> ( ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) i^i ( 0 [,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) ) |
| 43 |
36 37 41 42
|
mp3an |
|- ( ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) i^i ( 0 [,] +oo ) ) e. ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) |
| 44 |
|
inss2 |
|- ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( 0 (,] +oo ) |
| 45 |
|
iocssicc |
|- ( 0 (,] +oo ) C_ ( 0 [,] +oo ) |
| 46 |
44 45
|
sstri |
|- ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( 0 [,] +oo ) |
| 47 |
|
sseqin2 |
|- ( ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) C_ ( 0 [,] +oo ) <-> ( ( 0 [,] +oo ) i^i ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
| 48 |
46 47
|
mpbi |
|- ( ( 0 [,] +oo ) i^i ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) |
| 49 |
|
incom |
|- ( ( 0 [,] +oo ) i^i ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) = ( ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) i^i ( 0 [,] +oo ) ) |
| 50 |
48 49
|
eqtr3i |
|- ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) = ( ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) i^i ( 0 [,] +oo ) ) |
| 51 |
43 50 7
|
3eltr4i |
|- ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) e. J |
| 52 |
51
|
a1i |
|- ( ( ph /\ x e. RR ) -> ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) e. J ) |
| 53 |
|
eleq2 |
|- ( a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) -> ( +oo e. a <-> +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) ) |
| 54 |
53
|
adantl |
|- ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) -> ( +oo e. a <-> +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) ) |
| 55 |
54
|
biimprd |
|- ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) -> ( +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) -> +oo e. a ) ) |
| 56 |
|
simp-5r |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> x e. RR ) |
| 57 |
56
|
rexrd |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> x e. RR* ) |
| 58 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> A e. a ) |
| 59 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
| 60 |
58 59
|
eleqtrd |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> A e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) |
| 61 |
|
elin |
|- ( A e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) <-> ( A e. ( x (,] +oo ) /\ A e. ( 0 (,] +oo ) ) ) |
| 62 |
61
|
simplbi |
|- ( A e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) -> A e. ( x (,] +oo ) ) |
| 63 |
60 62
|
syl |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> A e. ( x (,] +oo ) ) |
| 64 |
|
elioc1 |
|- ( ( x e. RR* /\ +oo e. RR* ) -> ( A e. ( x (,] +oo ) <-> ( A e. RR* /\ x < A /\ A <_ +oo ) ) ) |
| 65 |
18 64
|
mpan2 |
|- ( x e. RR* -> ( A e. ( x (,] +oo ) <-> ( A e. RR* /\ x < A /\ A <_ +oo ) ) ) |
| 66 |
65
|
biimpa |
|- ( ( x e. RR* /\ A e. ( x (,] +oo ) ) -> ( A e. RR* /\ x < A /\ A <_ +oo ) ) |
| 67 |
66
|
simp2d |
|- ( ( x e. RR* /\ A e. ( x (,] +oo ) ) -> x < A ) |
| 68 |
57 63 67
|
syl2anc |
|- ( ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) /\ A e. a ) -> x < A ) |
| 69 |
68
|
ex |
|- ( ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> ( A e. a -> x < A ) ) |
| 70 |
69
|
ralimdva |
|- ( ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) /\ l e. NN ) -> ( A. k e. ( ZZ>= ` l ) A e. a -> A. k e. ( ZZ>= ` l ) x < A ) ) |
| 71 |
70
|
reximdva |
|- ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) -> ( E. l e. NN A. k e. ( ZZ>= ` l ) A e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) x < A ) ) |
| 72 |
|
fveq2 |
|- ( j = l -> ( ZZ>= ` j ) = ( ZZ>= ` l ) ) |
| 73 |
72
|
raleqdv |
|- ( j = l -> ( A. k e. ( ZZ>= ` j ) x < A <-> A. k e. ( ZZ>= ` l ) x < A ) ) |
| 74 |
73
|
cbvrexvw |
|- ( E. j e. NN A. k e. ( ZZ>= ` j ) x < A <-> E. l e. NN A. k e. ( ZZ>= ` l ) x < A ) |
| 75 |
71 74
|
imbitrrdi |
|- ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) -> ( E. l e. NN A. k e. ( ZZ>= ` l ) A e. a -> E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |
| 76 |
55 75
|
imim12d |
|- ( ( ( ph /\ x e. RR ) /\ a = ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) ) -> ( ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) -> ( +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) ) |
| 77 |
52 76
|
rspcimdv |
|- ( ( ph /\ x e. RR ) -> ( A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) -> ( +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) ) |
| 78 |
77
|
imp |
|- ( ( ( ph /\ x e. RR ) /\ A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) -> ( +oo e. ( ( x (,] +oo ) i^i ( 0 (,] +oo ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |
| 79 |
35 78
|
mpd |
|- ( ( ( ph /\ x e. RR ) /\ A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) |
| 80 |
79
|
ex |
|- ( ( ph /\ x e. RR ) -> ( A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) -> E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |
| 81 |
80
|
ralrimdva |
|- ( ph -> ( A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) -> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |
| 82 |
|
simplll |
|- ( ( ( ( ph /\ a e. J ) /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) /\ +oo e. a ) -> ph ) |
| 83 |
|
simpllr |
|- ( ( ( ( ph /\ a e. J ) /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) /\ +oo e. a ) -> a e. J ) |
| 84 |
|
simpr |
|- ( ( ( ( ph /\ a e. J ) /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) /\ +oo e. a ) -> +oo e. a ) |
| 85 |
1
|
pnfneige0 |
|- ( ( a e. J /\ +oo e. a ) -> E. x e. RR ( x (,] +oo ) C_ a ) |
| 86 |
83 84 85
|
syl2anc |
|- ( ( ( ( ph /\ a e. J ) /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) /\ +oo e. a ) -> E. x e. RR ( x (,] +oo ) C_ a ) |
| 87 |
|
simplr |
|- ( ( ( ( ph /\ a e. J ) /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) /\ +oo e. a ) -> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) |
| 88 |
|
r19.29r |
|- ( ( E. x e. RR ( x (,] +oo ) C_ a /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) -> E. x e. RR ( ( x (,] +oo ) C_ a /\ E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |
| 89 |
|
simp-4l |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> ph ) |
| 90 |
|
uznnssnn |
|- ( l e. NN -> ( ZZ>= ` l ) C_ NN ) |
| 91 |
90
|
ad2antlr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> ( ZZ>= ` l ) C_ NN ) |
| 92 |
|
simpr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> k e. ( ZZ>= ` l ) ) |
| 93 |
91 92
|
sseldd |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> k e. NN ) |
| 94 |
89 93
|
jca |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> ( ph /\ k e. NN ) ) |
| 95 |
|
simp-4r |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> x e. RR ) |
| 96 |
|
simpllr |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> ( x (,] +oo ) C_ a ) |
| 97 |
|
simplr |
|- ( ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ x < A ) -> ( x (,] +oo ) C_ a ) |
| 98 |
|
simplr |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x < A ) -> x e. RR ) |
| 99 |
98
|
rexrd |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x < A ) -> x e. RR* ) |
| 100 |
2
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 101 |
3 100
|
eqeltrrd |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 102 |
9 101
|
sselid |
|- ( ( ph /\ k e. NN ) -> A e. RR* ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x < A ) -> A e. RR* ) |
| 104 |
|
simpr |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x < A ) -> x < A ) |
| 105 |
|
pnfge |
|- ( A e. RR* -> A <_ +oo ) |
| 106 |
103 105
|
syl |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x < A ) -> A <_ +oo ) |
| 107 |
65
|
biimpar |
|- ( ( x e. RR* /\ ( A e. RR* /\ x < A /\ A <_ +oo ) ) -> A e. ( x (,] +oo ) ) |
| 108 |
99 103 104 106 107
|
syl13anc |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x < A ) -> A e. ( x (,] +oo ) ) |
| 109 |
108
|
adantlr |
|- ( ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ x < A ) -> A e. ( x (,] +oo ) ) |
| 110 |
97 109
|
sseldd |
|- ( ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ x < A ) -> A e. a ) |
| 111 |
110
|
ex |
|- ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) -> ( x < A -> A e. a ) ) |
| 112 |
94 95 96 111
|
syl21anc |
|- ( ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) /\ k e. ( ZZ>= ` l ) ) -> ( x < A -> A e. a ) ) |
| 113 |
112
|
ralimdva |
|- ( ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) /\ l e. NN ) -> ( A. k e. ( ZZ>= ` l ) x < A -> A. k e. ( ZZ>= ` l ) A e. a ) ) |
| 114 |
113
|
reximdva |
|- ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) -> ( E. l e. NN A. k e. ( ZZ>= ` l ) x < A -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) |
| 115 |
74 114
|
biimtrid |
|- ( ( ( ph /\ x e. RR ) /\ ( x (,] +oo ) C_ a ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) x < A -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) |
| 116 |
115
|
expimpd |
|- ( ( ph /\ x e. RR ) -> ( ( ( x (,] +oo ) C_ a /\ E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) |
| 117 |
116
|
rexlimdva |
|- ( ph -> ( E. x e. RR ( ( x (,] +oo ) C_ a /\ E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) |
| 118 |
88 117
|
syl5 |
|- ( ph -> ( ( E. x e. RR ( x (,] +oo ) C_ a /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) |
| 119 |
118
|
imp |
|- ( ( ph /\ ( E. x e. RR ( x (,] +oo ) C_ a /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) |
| 120 |
82 86 87 119
|
syl12anc |
|- ( ( ( ( ph /\ a e. J ) /\ A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) /\ +oo e. a ) -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) |
| 121 |
120
|
exp31 |
|- ( ( ph /\ a e. J ) -> ( A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A -> ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) ) |
| 122 |
121
|
ralrimdva |
|- ( ph -> ( A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A -> A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) ) ) |
| 123 |
81 122
|
impbid |
|- ( ph -> ( A. a e. J ( +oo e. a -> E. l e. NN A. k e. ( ZZ>= ` l ) A e. a ) <-> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |
| 124 |
23 123
|
bitrd |
|- ( ph -> ( F ( ~~>t ` J ) +oo <-> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < A ) ) |