| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmxrge0.j |
|
| 2 |
|
lmxrge0.6 |
|
| 3 |
|
lmxrge0.7 |
|
| 4 |
|
eqid |
|
| 5 |
|
xrstopn |
|
| 6 |
4 5
|
resstopn |
|
| 7 |
1 6
|
eqtr4i |
|
| 8 |
|
letopon |
|
| 9 |
|
iccssxr |
|
| 10 |
|
resttopon |
|
| 11 |
8 9 10
|
mp2an |
|
| 12 |
7 11
|
eqeltri |
|
| 13 |
12
|
a1i |
|
| 14 |
|
nnuz |
|
| 15 |
|
1zzd |
|
| 16 |
13 14 15 2 3
|
lmbrf |
|
| 17 |
|
0xr |
|
| 18 |
|
pnfxr |
|
| 19 |
|
0lepnf |
|
| 20 |
|
ubicc2 |
|
| 21 |
17 18 19 20
|
mp3an |
|
| 22 |
21
|
biantrur |
|
| 23 |
16 22
|
bitr4di |
|
| 24 |
|
rexr |
|
| 25 |
18
|
a1i |
|
| 26 |
|
ltpnf |
|
| 27 |
|
ubioc1 |
|
| 28 |
24 25 26 27
|
syl3anc |
|
| 29 |
|
0ltpnf |
|
| 30 |
|
ubioc1 |
|
| 31 |
17 18 29 30
|
mp3an |
|
| 32 |
28 31
|
jctir |
|
| 33 |
|
elin |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
|
letop |
|
| 37 |
|
ovex |
|
| 38 |
|
iocpnfordt |
|
| 39 |
|
iocpnfordt |
|
| 40 |
|
inopn |
|
| 41 |
36 38 39 40
|
mp3an |
|
| 42 |
|
elrestr |
|
| 43 |
36 37 41 42
|
mp3an |
|
| 44 |
|
inss2 |
|
| 45 |
|
iocssicc |
|
| 46 |
44 45
|
sstri |
|
| 47 |
|
sseqin2 |
|
| 48 |
46 47
|
mpbi |
|
| 49 |
|
incom |
|
| 50 |
48 49
|
eqtr3i |
|
| 51 |
43 50 7
|
3eltr4i |
|
| 52 |
51
|
a1i |
|
| 53 |
|
eleq2 |
|
| 54 |
53
|
adantl |
|
| 55 |
54
|
biimprd |
|
| 56 |
|
simp-5r |
|
| 57 |
56
|
rexrd |
|
| 58 |
|
simpr |
|
| 59 |
|
simp-4r |
|
| 60 |
58 59
|
eleqtrd |
|
| 61 |
|
elin |
|
| 62 |
61
|
simplbi |
|
| 63 |
60 62
|
syl |
|
| 64 |
|
elioc1 |
|
| 65 |
18 64
|
mpan2 |
|
| 66 |
65
|
biimpa |
|
| 67 |
66
|
simp2d |
|
| 68 |
57 63 67
|
syl2anc |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
ralimdva |
|
| 71 |
70
|
reximdva |
|
| 72 |
|
fveq2 |
|
| 73 |
72
|
raleqdv |
|
| 74 |
73
|
cbvrexvw |
|
| 75 |
71 74
|
imbitrrdi |
|
| 76 |
55 75
|
imim12d |
|
| 77 |
52 76
|
rspcimdv |
|
| 78 |
77
|
imp |
|
| 79 |
35 78
|
mpd |
|
| 80 |
79
|
ex |
|
| 81 |
80
|
ralrimdva |
|
| 82 |
|
simplll |
|
| 83 |
|
simpllr |
|
| 84 |
|
simpr |
|
| 85 |
1
|
pnfneige0 |
|
| 86 |
83 84 85
|
syl2anc |
|
| 87 |
|
simplr |
|
| 88 |
|
r19.29r |
|
| 89 |
|
simp-4l |
|
| 90 |
|
uznnssnn |
|
| 91 |
90
|
ad2antlr |
|
| 92 |
|
simpr |
|
| 93 |
91 92
|
sseldd |
|
| 94 |
89 93
|
jca |
|
| 95 |
|
simp-4r |
|
| 96 |
|
simpllr |
|
| 97 |
|
simplr |
|
| 98 |
|
simplr |
|
| 99 |
98
|
rexrd |
|
| 100 |
2
|
ffvelcdmda |
|
| 101 |
3 100
|
eqeltrrd |
|
| 102 |
9 101
|
sselid |
|
| 103 |
102
|
ad2antrr |
|
| 104 |
|
simpr |
|
| 105 |
|
pnfge |
|
| 106 |
103 105
|
syl |
|
| 107 |
65
|
biimpar |
|
| 108 |
99 103 104 106 107
|
syl13anc |
|
| 109 |
108
|
adantlr |
|
| 110 |
97 109
|
sseldd |
|
| 111 |
110
|
ex |
|
| 112 |
94 95 96 111
|
syl21anc |
|
| 113 |
112
|
ralimdva |
|
| 114 |
113
|
reximdva |
|
| 115 |
74 114
|
biimtrid |
|
| 116 |
115
|
expimpd |
|
| 117 |
116
|
rexlimdva |
|
| 118 |
88 117
|
syl5 |
|
| 119 |
118
|
imp |
|
| 120 |
82 86 87 119
|
syl12anc |
|
| 121 |
120
|
exp31 |
|
| 122 |
121
|
ralrimdva |
|
| 123 |
81 122
|
impbid |
|
| 124 |
23 123
|
bitrd |
|