Metamath Proof Explorer


Theorem lmdvg

Description: If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017)

Ref Expression
Hypotheses lmdvg.1 φF:0+∞
lmdvg.2 φkFkFk+1
lmdvg.3 φ¬Fdom
Assertion lmdvg φxjkjx<Fk

Proof

Step Hyp Ref Expression
1 lmdvg.1 φF:0+∞
2 lmdvg.2 φkFkFk+1
3 lmdvg.3 φ¬Fdom
4 nnuz =1
5 1zzd φxjFjx1
6 rge0ssre 0+∞
7 fss F:0+∞0+∞F:
8 1 6 7 sylancl φF:
9 8 adantr φxjFjxF:
10 2 ralrimiva φkFkFk+1
11 fveq2 k=lFk=Fl
12 fvoveq1 k=lFk+1=Fl+1
13 11 12 breq12d k=lFkFk+1FlFl+1
14 13 cbvralvw kFkFk+1lFlFl+1
15 10 14 sylib φlFlFl+1
16 15 r19.21bi φlFlFl+1
17 16 adantlr φxjFjxlFlFl+1
18 simpr φxjFjxxjFjx
19 fveq2 j=lFj=Fl
20 19 breq1d j=lFjxFlx
21 20 cbvralvw jFjxlFlx
22 21 rexbii xjFjxxlFlx
23 18 22 sylib φxjFjxxlFlx
24 4 5 9 17 23 climsup φxjFjxFsupranF<
25 nnex V
26 fex F:0+∞VFV
27 1 25 26 sylancl φFV
28 27 adantr φFsupranF<FV
29 ltso <Or
30 29 supex supranF<V
31 30 a1i φFsupranF<supranF<V
32 simpr φFsupranF<FsupranF<
33 breldmg FVsupranF<VFsupranF<Fdom
34 28 31 32 33 syl3anc φFsupranF<Fdom
35 24 34 syldan φxjFjxFdom
36 3 35 mtand φ¬xjFjx
37 ralnex x¬jFjx¬xjFjx
38 36 37 sylibr φx¬jFjx
39 simplr φxjx
40 8 adantr φxF:
41 40 ffvelcdmda φxjFj
42 39 41 ltnled φxjx<Fj¬Fjx
43 42 rexbidva φxjx<Fjj¬Fjx
44 rexnal j¬Fjx¬jFjx
45 43 44 bitrdi φxjx<Fj¬jFjx
46 45 ralbidva φxjx<Fjx¬jFjx
47 38 46 mpbird φxjx<Fj
48 47 r19.21bi φxjx<Fj
49 39 ad2antrr φxjx<Fjkjx
50 41 ad2antrr φxjx<FjkjFj
51 40 ad3antrrr φxjx<FjkjF:
52 uznnssnn jj
53 52 ad3antlr φxjx<Fjkjj
54 simpr φxjx<Fjkjkj
55 53 54 sseldd φxjx<Fjkjk
56 51 55 ffvelcdmd φxjx<FjkjFk
57 simplr φxjx<Fjkjx<Fj
58 simp-4l φxjx<Fjkjφ
59 simpllr φxjx<Fjkjj
60 simpr φjkjkj
61 8 ad3antrrr φjkjljkF:
62 fzssnn jjk
63 62 ad3antlr φjkjljkjk
64 simpr φjkjljkljk
65 63 64 sseldd φjkjljkl
66 61 65 ffvelcdmd φjkjljkFl
67 simplll φjkjljk1φ
68 fzssnn jjk1
69 68 ad3antlr φjkjljk1jk1
70 simpr φjkjljk1ljk1
71 69 70 sseldd φjkjljk1l
72 67 71 16 syl2anc φjkjljk1FlFl+1
73 60 66 72 monoord φjkjFjFk
74 58 59 54 73 syl21anc φxjx<FjkjFjFk
75 49 50 56 57 74 ltletrd φxjx<Fjkjx<Fk
76 75 ralrimiva φxjx<Fjkjx<Fk
77 76 ex φxjx<Fjkjx<Fk
78 77 reximdva φxjx<Fjjkjx<Fk
79 48 78 mpd φxjkjx<Fk
80 79 ralrimiva φxjkjx<Fk