Metamath Proof Explorer


Theorem lmdvglim

Description: If a monotonic real number sequence F diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017)

Ref Expression
Hypotheses lmdvglim.j J=TopOpen𝑠*𝑠0+∞
lmdvglim.1 φF:0+∞
lmdvglim.2 φkFkFk+1
lmdvglim.3 φ¬Fdom
Assertion lmdvglim φFtJ+∞

Proof

Step Hyp Ref Expression
1 lmdvglim.j J=TopOpen𝑠*𝑠0+∞
2 lmdvglim.1 φF:0+∞
3 lmdvglim.2 φkFkFk+1
4 lmdvglim.3 φ¬Fdom
5 2 3 4 lmdvg φxjkjx<Fk
6 icossicc 0+∞0+∞
7 fss F:0+∞0+∞0+∞F:0+∞
8 2 6 7 sylancl φF:0+∞
9 eqidd φkFk=Fk
10 1 8 9 lmxrge0 φFtJ+∞xjkjx<Fk
11 5 10 mpbird φFtJ+∞