Metamath Proof Explorer


Theorem lmdvglim

Description: If a monotonic real number sequence F diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017)

Ref Expression
Hypotheses lmdvglim.j
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
lmdvglim.1
|- ( ph -> F : NN --> ( 0 [,) +oo ) )
lmdvglim.2
|- ( ( ph /\ k e. NN ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) )
lmdvglim.3
|- ( ph -> -. F e. dom ~~> )
Assertion lmdvglim
|- ( ph -> F ( ~~>t ` J ) +oo )

Proof

Step Hyp Ref Expression
1 lmdvglim.j
 |-  J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
2 lmdvglim.1
 |-  ( ph -> F : NN --> ( 0 [,) +oo ) )
3 lmdvglim.2
 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) )
4 lmdvglim.3
 |-  ( ph -> -. F e. dom ~~> )
5 2 3 4 lmdvg
 |-  ( ph -> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < ( F ` k ) )
6 icossicc
 |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo )
7 fss
 |-  ( ( F : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : NN --> ( 0 [,] +oo ) )
8 2 6 7 sylancl
 |-  ( ph -> F : NN --> ( 0 [,] +oo ) )
9 eqidd
 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) )
10 1 8 9 lmxrge0
 |-  ( ph -> ( F ( ~~>t ` J ) +oo <-> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) )
11 5 10 mpbird
 |-  ( ph -> F ( ~~>t ` J ) +oo )