| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdvglim.j |
|- J = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 2 |
|
lmdvglim.1 |
|- ( ph -> F : NN --> ( 0 [,) +oo ) ) |
| 3 |
|
lmdvglim.2 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) |
| 4 |
|
lmdvglim.3 |
|- ( ph -> -. F e. dom ~~> ) |
| 5 |
2 3 4
|
lmdvg |
|- ( ph -> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) |
| 6 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 7 |
|
fss |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : NN --> ( 0 [,] +oo ) ) |
| 8 |
2 6 7
|
sylancl |
|- ( ph -> F : NN --> ( 0 [,] +oo ) ) |
| 9 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
| 10 |
1 8 9
|
lmxrge0 |
|- ( ph -> ( F ( ~~>t ` J ) +oo <-> A. x e. RR E. j e. NN A. k e. ( ZZ>= ` j ) x < ( F ` k ) ) ) |
| 11 |
5 10
|
mpbird |
|- ( ph -> F ( ~~>t ` J ) +oo ) |