Metamath Proof Explorer


Theorem lmdvglim

Description: If a monotonic real number sequence F diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017)

Ref Expression
Hypotheses lmdvglim.j 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
lmdvglim.1 ( 𝜑𝐹 : ℕ ⟶ ( 0 [,) +∞ ) )
lmdvglim.2 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
lmdvglim.3 ( 𝜑 → ¬ 𝐹 ∈ dom ⇝ )
Assertion lmdvglim ( 𝜑𝐹 ( ⇝𝑡𝐽 ) +∞ )

Proof

Step Hyp Ref Expression
1 lmdvglim.j 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
2 lmdvglim.1 ( 𝜑𝐹 : ℕ ⟶ ( 0 [,) +∞ ) )
3 lmdvglim.2 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
4 lmdvglim.3 ( 𝜑 → ¬ 𝐹 ∈ dom ⇝ )
5 2 3 4 lmdvg ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) )
6 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
7 fss ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) )
8 2 6 7 sylancl ( 𝜑𝐹 : ℕ ⟶ ( 0 [,] +∞ ) )
9 eqidd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
10 1 8 9 lmxrge0 ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) +∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) ) )
11 5 10 mpbird ( 𝜑𝐹 ( ⇝𝑡𝐽 ) +∞ )