Metamath Proof Explorer


Theorem lmdvg

Description: If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017)

Ref Expression
Hypotheses lmdvg.1 ( 𝜑𝐹 : ℕ ⟶ ( 0 [,) +∞ ) )
lmdvg.2 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
lmdvg.3 ( 𝜑 → ¬ 𝐹 ∈ dom ⇝ )
Assertion lmdvg ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) )

Proof

Step Hyp Ref Expression
1 lmdvg.1 ( 𝜑𝐹 : ℕ ⟶ ( 0 [,) +∞ ) )
2 lmdvg.2 ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
3 lmdvg.3 ( 𝜑 → ¬ 𝐹 ∈ dom ⇝ )
4 nnuz ℕ = ( ℤ ‘ 1 )
5 1zzd ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) → 1 ∈ ℤ )
6 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
7 fss ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℕ ⟶ ℝ )
8 1 6 7 sylancl ( 𝜑𝐹 : ℕ ⟶ ℝ )
9 8 adantr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) → 𝐹 : ℕ ⟶ ℝ )
10 2 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
11 fveq2 ( 𝑘 = 𝑙 → ( 𝐹𝑘 ) = ( 𝐹𝑙 ) )
12 fvoveq1 ( 𝑘 = 𝑙 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑙 + 1 ) ) )
13 11 12 breq12d ( 𝑘 = 𝑙 → ( ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) )
14 13 cbvralvw ( ∀ 𝑘 ∈ ℕ ( 𝐹𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑙 ∈ ℕ ( 𝐹𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) )
15 10 14 sylib ( 𝜑 → ∀ 𝑙 ∈ ℕ ( 𝐹𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) )
16 15 r19.21bi ( ( 𝜑𝑙 ∈ ℕ ) → ( 𝐹𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) )
17 16 adantlr ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) ∧ 𝑙 ∈ ℕ ) → ( 𝐹𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) )
18 simpr ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 )
19 fveq2 ( 𝑗 = 𝑙 → ( 𝐹𝑗 ) = ( 𝐹𝑙 ) )
20 19 breq1d ( 𝑗 = 𝑙 → ( ( 𝐹𝑗 ) ≤ 𝑥 ↔ ( 𝐹𝑙 ) ≤ 𝑥 ) )
21 20 cbvralvw ( ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ℕ ( 𝐹𝑙 ) ≤ 𝑥 )
22 21 rexbii ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ ℕ ( 𝐹𝑙 ) ≤ 𝑥 )
23 18 22 sylib ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ ℕ ( 𝐹𝑙 ) ≤ 𝑥 )
24 4 5 9 17 23 climsup ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) )
25 nnex ℕ ∈ V
26 fex ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ℕ ∈ V ) → 𝐹 ∈ V )
27 1 25 26 sylancl ( 𝜑𝐹 ∈ V )
28 27 adantr ( ( 𝜑𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ∈ V )
29 ltso < Or ℝ
30 29 supex sup ( ran 𝐹 , ℝ , < ) ∈ V
31 30 a1i ( ( 𝜑𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ V )
32 simpr ( ( 𝜑𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) )
33 breldmg ( ( 𝐹 ∈ V ∧ sup ( ran 𝐹 , ℝ , < ) ∈ V ∧ 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ∈ dom ⇝ )
34 28 31 32 33 syl3anc ( ( 𝜑𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ∈ dom ⇝ )
35 24 34 syldan ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) → 𝐹 ∈ dom ⇝ )
36 3 35 mtand ( 𝜑 → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 )
37 ralnex ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 )
38 36 37 sylibr ( 𝜑 → ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 )
39 simplr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑥 ∈ ℝ )
40 8 adantr ( ( 𝜑𝑥 ∈ ℝ ) → 𝐹 : ℕ ⟶ ℝ )
41 40 ffvelrnda ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∈ ℝ )
42 39 41 ltnled ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑥 < ( 𝐹𝑗 ) ↔ ¬ ( 𝐹𝑗 ) ≤ 𝑥 ) )
43 42 rexbidva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹𝑗 ) ↔ ∃ 𝑗 ∈ ℕ ¬ ( 𝐹𝑗 ) ≤ 𝑥 ) )
44 rexnal ( ∃ 𝑗 ∈ ℕ ¬ ( 𝐹𝑗 ) ≤ 𝑥 ↔ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 )
45 43 44 bitrdi ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹𝑗 ) ↔ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) )
46 45 ralbidva ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹𝑗 ) ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹𝑗 ) ≤ 𝑥 ) )
47 38 46 mpbird ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹𝑗 ) )
48 47 r19.21bi ( ( 𝜑𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹𝑗 ) )
49 39 ad2antrr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑥 ∈ ℝ )
50 41 ad2antrr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝐹𝑗 ) ∈ ℝ )
51 40 ad3antrrr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝐹 : ℕ ⟶ ℝ )
52 uznnssnn ( 𝑗 ∈ ℕ → ( ℤ𝑗 ) ⊆ ℕ )
53 52 ad3antlr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ℤ𝑗 ) ⊆ ℕ )
54 simpr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ( ℤ𝑗 ) )
55 53 54 sseldd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ℕ )
56 51 55 ffvelrnd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
57 simplr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑥 < ( 𝐹𝑗 ) )
58 simp-4l ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝜑 )
59 simpllr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑗 ∈ ℕ )
60 simpr ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ( ℤ𝑗 ) )
61 8 ad3antrrr ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → 𝐹 : ℕ ⟶ ℝ )
62 fzssnn ( 𝑗 ∈ ℕ → ( 𝑗 ... 𝑘 ) ⊆ ℕ )
63 62 ad3antlr ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝑗 ... 𝑘 ) ⊆ ℕ )
64 simpr ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → 𝑙 ∈ ( 𝑗 ... 𝑘 ) )
65 63 64 sseldd ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → 𝑙 ∈ ℕ )
66 61 65 ffvelrnd ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹𝑙 ) ∈ ℝ )
67 simplll ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝜑 )
68 fzssnn ( 𝑗 ∈ ℕ → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ℕ )
69 68 ad3antlr ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ℕ )
70 simpr ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) )
71 69 70 sseldd ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℕ )
72 67 71 16 syl2anc ( ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) )
73 60 66 72 monoord ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝐹𝑗 ) ≤ ( 𝐹𝑘 ) )
74 58 59 54 73 syl21anc ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝐹𝑗 ) ≤ ( 𝐹𝑘 ) )
75 49 50 56 57 74 ltletrd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑥 < ( 𝐹𝑘 ) )
76 75 ralrimiva ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹𝑗 ) ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) )
77 76 ex ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑥 < ( 𝐹𝑗 ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) ) )
78 77 reximdva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹𝑗 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) ) )
79 48 78 mpd ( ( 𝜑𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) )
80 79 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑥 < ( 𝐹𝑘 ) )