| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmdvg.1 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 2 |
|
lmdvg.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 3 |
|
lmdvg.3 |
⊢ ( 𝜑 → ¬ 𝐹 ∈ dom ⇝ ) |
| 4 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 5 |
|
1zzd |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → 1 ∈ ℤ ) |
| 6 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 7 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℕ ⟶ ℝ ) |
| 8 |
1 6 7
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → 𝐹 : ℕ ⟶ ℝ ) |
| 10 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑙 ) ) |
| 12 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
| 13 |
11 12
|
breq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐹 ‘ 𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) ) |
| 14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑙 ∈ ℕ ( 𝐹 ‘ 𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
| 15 |
10 14
|
sylib |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ ( 𝐹 ‘ 𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
| 16 |
15
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) → ( 𝐹 ‘ 𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑙 ∈ ℕ ) → ( 𝐹 ‘ 𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 19 |
|
fveq2 |
⊢ ( 𝑗 = 𝑙 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑙 ) ) |
| 20 |
19
|
breq1d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) ) |
| 21 |
20
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∀ 𝑙 ∈ ℕ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 22 |
21
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ ℕ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 23 |
18 22
|
sylib |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑙 ∈ ℕ ( 𝐹 ‘ 𝑙 ) ≤ 𝑥 ) |
| 24 |
4 5 9 17 23
|
climsup |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) |
| 25 |
|
nnex |
⊢ ℕ ∈ V |
| 26 |
|
fex |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ℕ ∈ V ) → 𝐹 ∈ V ) |
| 27 |
1 25 26
|
sylancl |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ∈ V ) |
| 29 |
|
ltso |
⊢ < Or ℝ |
| 30 |
29
|
supex |
⊢ sup ( ran 𝐹 , ℝ , < ) ∈ V |
| 31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ V ) |
| 32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) |
| 33 |
|
breldmg |
⊢ ( ( 𝐹 ∈ V ∧ sup ( ran 𝐹 , ℝ , < ) ∈ V ∧ 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ∈ dom ⇝ ) |
| 34 |
28 31 32 33
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐹 ⇝ sup ( ran 𝐹 , ℝ , < ) ) → 𝐹 ∈ dom ⇝ ) |
| 35 |
24 34
|
syldan |
⊢ ( ( 𝜑 ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → 𝐹 ∈ dom ⇝ ) |
| 36 |
3 35
|
mtand |
⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 37 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 38 |
36 37
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 39 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑥 ∈ ℝ ) |
| 40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℕ ⟶ ℝ ) |
| 41 |
40
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 42 |
39 41
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑥 < ( 𝐹 ‘ 𝑗 ) ↔ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 43 |
42
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹 ‘ 𝑗 ) ↔ ∃ 𝑗 ∈ ℕ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 44 |
|
rexnal |
⊢ ( ∃ 𝑗 ∈ ℕ ¬ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ↔ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
| 45 |
43 44
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹 ‘ 𝑗 ) ↔ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 46 |
45
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹 ‘ 𝑗 ) ↔ ∀ 𝑥 ∈ ℝ ¬ ∀ 𝑗 ∈ ℕ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
| 47 |
38 46
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) |
| 48 |
47
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) |
| 49 |
39
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 ∈ ℝ ) |
| 50 |
41
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 51 |
40
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐹 : ℕ ⟶ ℝ ) |
| 52 |
|
uznnssnn |
⊢ ( 𝑗 ∈ ℕ → ( ℤ≥ ‘ 𝑗 ) ⊆ ℕ ) |
| 53 |
52
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ ℕ ) |
| 54 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 55 |
53 54
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 56 |
51 55
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 57 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 < ( 𝐹 ‘ 𝑗 ) ) |
| 58 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝜑 ) |
| 59 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑗 ∈ ℕ ) |
| 60 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 61 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → 𝐹 : ℕ ⟶ ℝ ) |
| 62 |
|
fzssnn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 ... 𝑘 ) ⊆ ℕ ) |
| 63 |
62
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝑗 ... 𝑘 ) ⊆ ℕ ) |
| 64 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) |
| 65 |
63 64
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → 𝑙 ∈ ℕ ) |
| 66 |
61 65
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑙 ) ∈ ℝ ) |
| 67 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝜑 ) |
| 68 |
|
fzssnn |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ℕ ) |
| 69 |
68
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝑗 ... ( 𝑘 − 1 ) ) ⊆ ℕ ) |
| 70 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) |
| 71 |
69 70
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → 𝑙 ∈ ℕ ) |
| 72 |
67 71 16
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ∧ 𝑙 ∈ ( 𝑗 ... ( 𝑘 − 1 ) ) ) → ( 𝐹 ‘ 𝑙 ) ≤ ( 𝐹 ‘ ( 𝑙 + 1 ) ) ) |
| 73 |
60 66 72
|
monoord |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 74 |
58 59 54 73
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 75 |
49 50 56 57 74
|
ltletrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑥 < ( 𝐹 ‘ 𝑘 ) ) |
| 76 |
75
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑥 < ( 𝐹 ‘ 𝑗 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) |
| 77 |
76
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑥 < ( 𝐹 ‘ 𝑗 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) ) |
| 78 |
77
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑗 ∈ ℕ 𝑥 < ( 𝐹 ‘ 𝑗 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) ) |
| 79 |
48 78
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) |
| 80 |
79
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑥 < ( 𝐹 ‘ 𝑘 ) ) |