| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
| 2 |
|
eqid |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) |
| 3 |
|
eqid |
⊢ ran (,) = ran (,) |
| 4 |
1 2 3
|
leordtval |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 5 |
|
letop |
⊢ ( ordTop ‘ ≤ ) ∈ Top |
| 6 |
4 5
|
eqeltrri |
⊢ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top |
| 7 |
|
tgclb |
⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases ↔ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ∈ Top ) |
| 8 |
6 7
|
mpbir |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases |
| 9 |
|
bastg |
⊢ ( ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ∈ TopBases → ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( topGen ‘ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 11 |
10 4
|
sseqtrri |
⊢ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ⊆ ( ordTop ‘ ≤ ) |
| 12 |
|
ssun1 |
⊢ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ⊆ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) |
| 13 |
|
ssun1 |
⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ⊆ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) |
| 14 |
|
eqid |
⊢ ( 𝐴 (,] +∞ ) = ( 𝐴 (,] +∞ ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 (,] +∞ ) = ( 𝐴 (,] +∞ ) ) |
| 16 |
15
|
rspceeqv |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐴 (,] +∞ ) = ( 𝐴 (,] +∞ ) ) → ∃ 𝑥 ∈ ℝ* ( 𝐴 (,] +∞ ) = ( 𝑥 (,] +∞ ) ) |
| 17 |
14 16
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ* → ∃ 𝑥 ∈ ℝ* ( 𝐴 (,] +∞ ) = ( 𝑥 (,] +∞ ) ) |
| 18 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) |
| 19 |
|
ovex |
⊢ ( 𝑥 (,] +∞ ) ∈ V |
| 20 |
18 19
|
elrnmpti |
⊢ ( ( 𝐴 (,] +∞ ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ↔ ∃ 𝑥 ∈ ℝ* ( 𝐴 (,] +∞ ) = ( 𝑥 (,] +∞ ) ) |
| 21 |
17 20
|
sylibr |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,] +∞ ) ∈ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ) |
| 22 |
13 21
|
sselid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,] +∞ ) ∈ ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ) |
| 23 |
12 22
|
sselid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,] +∞ ) ∈ ( ( ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) ∪ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) ) ∪ ran (,) ) ) |
| 24 |
11 23
|
sselid |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) |
| 26 |
|
df-ioc |
⊢ (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) |
| 27 |
26
|
ixxf |
⊢ (,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 28 |
27
|
fdmi |
⊢ dom (,] = ( ℝ* × ℝ* ) |
| 29 |
28
|
ndmov |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 (,] +∞ ) = ∅ ) |
| 30 |
|
0opn |
⊢ ( ( ordTop ‘ ≤ ) ∈ Top → ∅ ∈ ( ordTop ‘ ≤ ) ) |
| 31 |
5 30
|
ax-mp |
⊢ ∅ ∈ ( ordTop ‘ ≤ ) |
| 32 |
29 31
|
eqeltrdi |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) ) |
| 33 |
25 32
|
pm2.61i |
⊢ ( 𝐴 (,] +∞ ) ∈ ( ordTop ‘ ≤ ) |