| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcvg4.s |
|- S = ( ZZ>= ` M ) |
| 2 |
|
fsumcvg4.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
fsumcvg4.c |
|- ( ph -> F : S --> CC ) |
| 4 |
|
fsumcvg4.f |
|- ( ph -> ( `' F " ( CC \ { 0 } ) ) e. Fin ) |
| 5 |
|
ffun |
|- ( F : S --> CC -> Fun F ) |
| 6 |
|
difpreima |
|- ( Fun F -> ( `' F " ( CC \ { 0 } ) ) = ( ( `' F " CC ) \ ( `' F " { 0 } ) ) ) |
| 7 |
3 5 6
|
3syl |
|- ( ph -> ( `' F " ( CC \ { 0 } ) ) = ( ( `' F " CC ) \ ( `' F " { 0 } ) ) ) |
| 8 |
|
difss |
|- ( ( `' F " CC ) \ ( `' F " { 0 } ) ) C_ ( `' F " CC ) |
| 9 |
7 8
|
eqsstrdi |
|- ( ph -> ( `' F " ( CC \ { 0 } ) ) C_ ( `' F " CC ) ) |
| 10 |
|
fimacnv |
|- ( F : S --> CC -> ( `' F " CC ) = S ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( `' F " CC ) = S ) |
| 12 |
9 11
|
sseqtrd |
|- ( ph -> ( `' F " ( CC \ { 0 } ) ) C_ S ) |
| 13 |
|
exmidd |
|- ( ( ph /\ k e. S ) -> ( k e. ( `' F " ( CC \ { 0 } ) ) \/ -. k e. ( `' F " ( CC \ { 0 } ) ) ) ) |
| 14 |
|
eqid |
|- ( F ` k ) = ( F ` k ) |
| 15 |
14
|
biantru |
|- ( k e. ( `' F " ( CC \ { 0 } ) ) <-> ( k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = ( F ` k ) ) ) |
| 16 |
15
|
a1i |
|- ( ( ph /\ k e. S ) -> ( k e. ( `' F " ( CC \ { 0 } ) ) <-> ( k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = ( F ` k ) ) ) ) |
| 17 |
1
|
fvexi |
|- S e. _V |
| 18 |
17
|
a1i |
|- ( ph -> S e. _V ) |
| 19 |
|
0nn0 |
|- 0 e. NN0 |
| 20 |
19
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 21 |
|
eqid |
|- ( CC \ { 0 } ) = ( CC \ { 0 } ) |
| 22 |
21
|
ffs2 |
|- ( ( S e. _V /\ 0 e. NN0 /\ F : S --> CC ) -> ( F supp 0 ) = ( `' F " ( CC \ { 0 } ) ) ) |
| 23 |
18 20 3 22
|
syl3anc |
|- ( ph -> ( F supp 0 ) = ( `' F " ( CC \ { 0 } ) ) ) |
| 24 |
3
|
ffnd |
|- ( ph -> F Fn S ) |
| 25 |
|
suppvalfn |
|- ( ( F Fn S /\ S e. _V /\ 0 e. NN0 ) -> ( F supp 0 ) = { k e. S | ( F ` k ) =/= 0 } ) |
| 26 |
24 18 20 25
|
syl3anc |
|- ( ph -> ( F supp 0 ) = { k e. S | ( F ` k ) =/= 0 } ) |
| 27 |
23 26
|
eqtr3d |
|- ( ph -> ( `' F " ( CC \ { 0 } ) ) = { k e. S | ( F ` k ) =/= 0 } ) |
| 28 |
27
|
eleq2d |
|- ( ph -> ( k e. ( `' F " ( CC \ { 0 } ) ) <-> k e. { k e. S | ( F ` k ) =/= 0 } ) ) |
| 29 |
|
rabid |
|- ( k e. { k e. S | ( F ` k ) =/= 0 } <-> ( k e. S /\ ( F ` k ) =/= 0 ) ) |
| 30 |
28 29
|
bitrdi |
|- ( ph -> ( k e. ( `' F " ( CC \ { 0 } ) ) <-> ( k e. S /\ ( F ` k ) =/= 0 ) ) ) |
| 31 |
30
|
baibd |
|- ( ( ph /\ k e. S ) -> ( k e. ( `' F " ( CC \ { 0 } ) ) <-> ( F ` k ) =/= 0 ) ) |
| 32 |
31
|
necon2bbid |
|- ( ( ph /\ k e. S ) -> ( ( F ` k ) = 0 <-> -. k e. ( `' F " ( CC \ { 0 } ) ) ) ) |
| 33 |
32
|
biimprd |
|- ( ( ph /\ k e. S ) -> ( -. k e. ( `' F " ( CC \ { 0 } ) ) -> ( F ` k ) = 0 ) ) |
| 34 |
33
|
pm4.71d |
|- ( ( ph /\ k e. S ) -> ( -. k e. ( `' F " ( CC \ { 0 } ) ) <-> ( -. k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = 0 ) ) ) |
| 35 |
16 34
|
orbi12d |
|- ( ( ph /\ k e. S ) -> ( ( k e. ( `' F " ( CC \ { 0 } ) ) \/ -. k e. ( `' F " ( CC \ { 0 } ) ) ) <-> ( ( k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = ( F ` k ) ) \/ ( -. k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = 0 ) ) ) ) |
| 36 |
13 35
|
mpbid |
|- ( ( ph /\ k e. S ) -> ( ( k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = ( F ` k ) ) \/ ( -. k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = 0 ) ) ) |
| 37 |
|
eqif |
|- ( ( F ` k ) = if ( k e. ( `' F " ( CC \ { 0 } ) ) , ( F ` k ) , 0 ) <-> ( ( k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = ( F ` k ) ) \/ ( -. k e. ( `' F " ( CC \ { 0 } ) ) /\ ( F ` k ) = 0 ) ) ) |
| 38 |
36 37
|
sylibr |
|- ( ( ph /\ k e. S ) -> ( F ` k ) = if ( k e. ( `' F " ( CC \ { 0 } ) ) , ( F ` k ) , 0 ) ) |
| 39 |
12
|
sselda |
|- ( ( ph /\ k e. ( `' F " ( CC \ { 0 } ) ) ) -> k e. S ) |
| 40 |
3
|
ffvelcdmda |
|- ( ( ph /\ k e. S ) -> ( F ` k ) e. CC ) |
| 41 |
39 40
|
syldan |
|- ( ( ph /\ k e. ( `' F " ( CC \ { 0 } ) ) ) -> ( F ` k ) e. CC ) |
| 42 |
1 2 4 12 38 41
|
fsumcvg3 |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |