Step |
Hyp |
Ref |
Expression |
1 |
|
fsumcvg4.s |
|
2 |
|
fsumcvg4.m |
|
3 |
|
fsumcvg4.c |
|
4 |
|
fsumcvg4.f |
|
5 |
|
ffun |
|
6 |
|
difpreima |
|
7 |
3 5 6
|
3syl |
|
8 |
|
difss |
|
9 |
7 8
|
eqsstrdi |
|
10 |
|
fimacnv |
|
11 |
3 10
|
syl |
|
12 |
9 11
|
sseqtrd |
|
13 |
|
exmidd |
|
14 |
|
eqid |
|
15 |
14
|
biantru |
|
16 |
15
|
a1i |
|
17 |
1
|
fvexi |
|
18 |
17
|
a1i |
|
19 |
|
0nn0 |
|
20 |
19
|
a1i |
|
21 |
|
eqid |
|
22 |
21
|
ffs2 |
|
23 |
18 20 3 22
|
syl3anc |
|
24 |
3
|
ffnd |
|
25 |
|
suppvalfn |
|
26 |
24 18 20 25
|
syl3anc |
|
27 |
23 26
|
eqtr3d |
|
28 |
27
|
eleq2d |
|
29 |
|
rabid |
|
30 |
28 29
|
bitrdi |
|
31 |
30
|
baibd |
|
32 |
31
|
necon2bbid |
|
33 |
32
|
biimprd |
|
34 |
33
|
pm4.71d |
|
35 |
16 34
|
orbi12d |
|
36 |
13 35
|
mpbid |
|
37 |
|
eqif |
|
38 |
36 37
|
sylibr |
|
39 |
12
|
sselda |
|
40 |
3
|
ffvelrnda |
|
41 |
39 40
|
syldan |
|
42 |
1 2 4 12 38 41
|
fsumcvg3 |
|