Metamath Proof Explorer


Theorem lmlimxrge0

Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017)

Ref Expression
Hypotheses lmlimxrge0.j 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
lmlimxrge0.f ( 𝜑𝐹 : ℕ ⟶ 𝑋 )
lmlimxrge0.p ( 𝜑𝑃𝑋 )
lmlimxrge0.x 𝑋 ⊆ ( 0 [,) +∞ )
Assertion lmlimxrge0 ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑃𝐹𝑃 ) )

Proof

Step Hyp Ref Expression
1 lmlimxrge0.j 𝐽 = ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
2 lmlimxrge0.f ( 𝜑𝐹 : ℕ ⟶ 𝑋 )
3 lmlimxrge0.p ( 𝜑𝑃𝑋 )
4 lmlimxrge0.x 𝑋 ⊆ ( 0 [,) +∞ )
5 xrge0topn ( TopOpen ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
6 1 5 eqtri 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) )
7 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
8 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
9 resttopon ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) )
10 7 8 9 mp2an ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) )
11 6 10 eqeltri 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) )
12 fvex ( ordTop ‘ ≤ ) ∈ V
13 icossicc ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ )
14 4 13 sstri 𝑋 ⊆ ( 0 [,] +∞ )
15 ovex ( 0 [,] +∞ ) ∈ V
16 restabs ( ( ( ordTop ‘ ≤ ) ∈ V ∧ 𝑋 ⊆ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 ) )
17 12 14 15 16 mp3an ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 )
18 6 oveq1i ( 𝐽t 𝑋 ) = ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t 𝑋 )
19 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
20 4 19 sstri 𝑋 ⊆ ℝ
21 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
22 eqid ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ )
23 21 22 xrrest2 ( 𝑋 ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 ) )
24 20 23 ax-mp ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 )
25 17 18 24 3eqtr4i ( 𝐽t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 )
26 ax-resscn ℝ ⊆ ℂ
27 20 26 sstri 𝑋 ⊆ ℂ
28 11 2 3 25 27 lmlim ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑃𝐹𝑃 ) )