| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmlimxrge0.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 2 |
|
lmlimxrge0.f |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
| 3 |
|
lmlimxrge0.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 4 |
|
lmlimxrge0.x |
⊢ 𝑋 ⊆ ( 0 [,) +∞ ) |
| 5 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 6 |
1 5
|
eqtri |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 7 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
| 8 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 9 |
|
resttopon |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 10 |
7 8 9
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 11 |
6 10
|
eqeltri |
⊢ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 12 |
|
fvex |
⊢ ( ordTop ‘ ≤ ) ∈ V |
| 13 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
| 14 |
4 13
|
sstri |
⊢ 𝑋 ⊆ ( 0 [,] +∞ ) |
| 15 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 16 |
|
restabs |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ V ∧ 𝑋 ⊆ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ∈ V ) → ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 ) ) |
| 17 |
12 14 15 16
|
mp3an |
⊢ ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 ) |
| 18 |
6
|
oveq1i |
⊢ ( 𝐽 ↾t 𝑋 ) = ( ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ↾t 𝑋 ) |
| 19 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 20 |
4 19
|
sstri |
⊢ 𝑋 ⊆ ℝ |
| 21 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 22 |
|
eqid |
⊢ ( ordTop ‘ ≤ ) = ( ordTop ‘ ≤ ) |
| 23 |
21 22
|
xrrest2 |
⊢ ( 𝑋 ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 ) ) |
| 24 |
20 23
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( ordTop ‘ ≤ ) ↾t 𝑋 ) |
| 25 |
17 18 24
|
3eqtr4i |
⊢ ( 𝐽 ↾t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) |
| 26 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 27 |
20 26
|
sstri |
⊢ 𝑋 ⊆ ℂ |
| 28 |
11 2 3 25 27
|
lmlim |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ 𝐹 ⇝ 𝑃 ) ) |