Metamath Proof Explorer


Theorem lmlimxrge0

Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017)

Ref Expression
Hypotheses lmlimxrge0.j J=TopOpen𝑠*𝑠0+∞
lmlimxrge0.f φF:X
lmlimxrge0.p φPX
lmlimxrge0.x X0+∞
Assertion lmlimxrge0 φFtJPFP

Proof

Step Hyp Ref Expression
1 lmlimxrge0.j J=TopOpen𝑠*𝑠0+∞
2 lmlimxrge0.f φF:X
3 lmlimxrge0.p φPX
4 lmlimxrge0.x X0+∞
5 xrge0topn TopOpen𝑠*𝑠0+∞=ordTop𝑡0+∞
6 1 5 eqtri J=ordTop𝑡0+∞
7 letopon ordTopTopOn*
8 iccssxr 0+∞*
9 resttopon ordTopTopOn*0+∞*ordTop𝑡0+∞TopOn0+∞
10 7 8 9 mp2an ordTop𝑡0+∞TopOn0+∞
11 6 10 eqeltri JTopOn0+∞
12 fvex ordTopV
13 icossicc 0+∞0+∞
14 4 13 sstri X0+∞
15 ovex 0+∞V
16 restabs ordTopVX0+∞0+∞VordTop𝑡0+∞𝑡X=ordTop𝑡X
17 12 14 15 16 mp3an ordTop𝑡0+∞𝑡X=ordTop𝑡X
18 6 oveq1i J𝑡X=ordTop𝑡0+∞𝑡X
19 rge0ssre 0+∞
20 4 19 sstri X
21 eqid TopOpenfld=TopOpenfld
22 eqid ordTop=ordTop
23 21 22 xrrest2 XTopOpenfld𝑡X=ordTop𝑡X
24 20 23 ax-mp TopOpenfld𝑡X=ordTop𝑡X
25 17 18 24 3eqtr4i J𝑡X=TopOpenfld𝑡X
26 ax-resscn
27 20 26 sstri X
28 11 2 3 25 27 lmlim φFtJPFP