Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmlimxrge0.j | |
|
lmlimxrge0.f | |
||
lmlimxrge0.p | |
||
lmlimxrge0.x | |
||
Assertion | lmlimxrge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmlimxrge0.j | |
|
2 | lmlimxrge0.f | |
|
3 | lmlimxrge0.p | |
|
4 | lmlimxrge0.x | |
|
5 | xrge0topn | |
|
6 | 1 5 | eqtri | |
7 | letopon | |
|
8 | iccssxr | |
|
9 | resttopon | |
|
10 | 7 8 9 | mp2an | |
11 | 6 10 | eqeltri | |
12 | fvex | |
|
13 | icossicc | |
|
14 | 4 13 | sstri | |
15 | ovex | |
|
16 | restabs | |
|
17 | 12 14 15 16 | mp3an | |
18 | 6 | oveq1i | |
19 | rge0ssre | |
|
20 | 4 19 | sstri | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | xrrest2 | |
24 | 20 23 | ax-mp | |
25 | 17 18 24 | 3eqtr4i | |
26 | ax-resscn | |
|
27 | 20 26 | sstri | |
28 | 11 2 3 25 27 | lmlim | |