Metamath Proof Explorer


Theorem xrrest2

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses xrrest2.1 J=TopOpenfld
xrrest2.2 X=ordTop
Assertion xrrest2 AJ𝑡A=X𝑡A

Proof

Step Hyp Ref Expression
1 xrrest2.1 J=TopOpenfld
2 xrrest2.2 X=ordTop
3 eqid topGenran.=topGenran.
4 1 3 rerest AJ𝑡A=topGenran.𝑡A
5 2 3 xrrest AX𝑡A=topGenran.𝑡A
6 4 5 eqtr4d AJ𝑡A=X𝑡A