Metamath Proof Explorer


Theorem xrrest

Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses xrrest.1 X=ordTop
xrrest.2 R=topGenran.
Assertion xrrest AX𝑡A=R𝑡A

Proof

Step Hyp Ref Expression
1 xrrest.1 X=ordTop
2 xrrest.2 R=topGenran.
3 1 oveq1i X𝑡=ordTop𝑡
4 3 xrtgioo topGenran.=X𝑡
5 2 4 eqtri R=X𝑡
6 5 oveq1i R𝑡A=X𝑡𝑡A
7 1 fvexi XV
8 reex V
9 restabs XVAVX𝑡𝑡A=X𝑡A
10 7 8 9 mp3an13 AX𝑡𝑡A=X𝑡A
11 6 10 eqtr2id AX𝑡A=R𝑡A