| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmlim.j |
|- J e. ( TopOn ` Y ) |
| 2 |
|
lmlim.f |
|- ( ph -> F : NN --> X ) |
| 3 |
|
lmlim.p |
|- ( ph -> P e. X ) |
| 4 |
|
lmlim.t |
|- ( J |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
| 5 |
|
lmlim.x |
|- X C_ CC |
| 6 |
|
eqid |
|- ( J |`t X ) = ( J |`t X ) |
| 7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 8 |
|
cnex |
|- CC e. _V |
| 9 |
8
|
a1i |
|- ( ph -> CC e. _V ) |
| 10 |
5
|
a1i |
|- ( ph -> X C_ CC ) |
| 11 |
9 10
|
ssexd |
|- ( ph -> X e. _V ) |
| 12 |
1
|
topontopi |
|- J e. Top |
| 13 |
12
|
a1i |
|- ( ph -> J e. Top ) |
| 14 |
|
1z |
|- 1 e. ZZ |
| 15 |
14
|
a1i |
|- ( ph -> 1 e. ZZ ) |
| 16 |
6 7 11 13 3 15 2
|
lmss |
|- ( ph -> ( F ( ~~>t ` J ) P <-> F ( ~~>t ` ( J |`t X ) ) P ) ) |
| 17 |
4
|
fveq2i |
|- ( ~~>t ` ( J |`t X ) ) = ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) |
| 18 |
17
|
breqi |
|- ( F ( ~~>t ` ( J |`t X ) ) P <-> F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P ) |
| 19 |
18
|
a1i |
|- ( ph -> ( F ( ~~>t ` ( J |`t X ) ) P <-> F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P ) ) |
| 20 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
| 21 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 22 |
21
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 23 |
22
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 24 |
20 7 11 23 3 15 2
|
lmss |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) P <-> F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P ) ) |
| 25 |
|
fss |
|- ( ( F : NN --> X /\ X C_ CC ) -> F : NN --> CC ) |
| 26 |
2 5 25
|
sylancl |
|- ( ph -> F : NN --> CC ) |
| 27 |
21 7
|
lmclimf |
|- ( ( 1 e. ZZ /\ F : NN --> CC ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) P <-> F ~~> P ) ) |
| 28 |
14 26 27
|
sylancr |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) P <-> F ~~> P ) ) |
| 29 |
24 28
|
bitr3d |
|- ( ph -> ( F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P <-> F ~~> P ) ) |
| 30 |
16 19 29
|
3bitrd |
|- ( ph -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |