Step |
Hyp |
Ref |
Expression |
1 |
|
lmlim.j |
|- J e. ( TopOn ` Y ) |
2 |
|
lmlim.f |
|- ( ph -> F : NN --> X ) |
3 |
|
lmlim.p |
|- ( ph -> P e. X ) |
4 |
|
lmlim.t |
|- ( J |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
5 |
|
lmlim.x |
|- X C_ CC |
6 |
|
eqid |
|- ( J |`t X ) = ( J |`t X ) |
7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
8 |
|
cnex |
|- CC e. _V |
9 |
8
|
a1i |
|- ( ph -> CC e. _V ) |
10 |
5
|
a1i |
|- ( ph -> X C_ CC ) |
11 |
9 10
|
ssexd |
|- ( ph -> X e. _V ) |
12 |
1
|
topontopi |
|- J e. Top |
13 |
12
|
a1i |
|- ( ph -> J e. Top ) |
14 |
|
1z |
|- 1 e. ZZ |
15 |
14
|
a1i |
|- ( ph -> 1 e. ZZ ) |
16 |
6 7 11 13 3 15 2
|
lmss |
|- ( ph -> ( F ( ~~>t ` J ) P <-> F ( ~~>t ` ( J |`t X ) ) P ) ) |
17 |
4
|
fveq2i |
|- ( ~~>t ` ( J |`t X ) ) = ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) |
18 |
17
|
breqi |
|- ( F ( ~~>t ` ( J |`t X ) ) P <-> F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P ) |
19 |
18
|
a1i |
|- ( ph -> ( F ( ~~>t ` ( J |`t X ) ) P <-> F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P ) ) |
20 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t X ) = ( ( TopOpen ` CCfld ) |`t X ) |
21 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
22 |
21
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
23 |
22
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
24 |
20 7 11 23 3 15 2
|
lmss |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) P <-> F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P ) ) |
25 |
|
fss |
|- ( ( F : NN --> X /\ X C_ CC ) -> F : NN --> CC ) |
26 |
2 5 25
|
sylancl |
|- ( ph -> F : NN --> CC ) |
27 |
21 7
|
lmclimf |
|- ( ( 1 e. ZZ /\ F : NN --> CC ) -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) P <-> F ~~> P ) ) |
28 |
14 26 27
|
sylancr |
|- ( ph -> ( F ( ~~>t ` ( TopOpen ` CCfld ) ) P <-> F ~~> P ) ) |
29 |
24 28
|
bitr3d |
|- ( ph -> ( F ( ~~>t ` ( ( TopOpen ` CCfld ) |`t X ) ) P <-> F ~~> P ) ) |
30 |
16 19 29
|
3bitrd |
|- ( ph -> ( F ( ~~>t ` J ) P <-> F ~~> P ) ) |