Metamath Proof Explorer


Theorem topontopi

Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis topontopi.1
|- J e. ( TopOn ` B )
Assertion topontopi
|- J e. Top

Proof

Step Hyp Ref Expression
1 topontopi.1
 |-  J e. ( TopOn ` B )
2 topontop
 |-  ( J e. ( TopOn ` B ) -> J e. Top )
3 1 2 ax-mp
 |-  J e. Top