| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcvg.j |
⊢ 𝐽 = ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 2 |
|
esumcvg.f |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 3 |
|
esumcvg.a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
esumcvg.m |
⊢ ( 𝑘 = 𝑚 → 𝐴 = 𝐵 ) |
| 5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 6 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 1 ∈ ℤ ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
| 8 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 10 |
8 9
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
| 11 |
4
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 12 |
11
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ( 0 [,) +∞ ) ↔ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 13 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ ℕ 𝐴 ∈ ( 0 [,) +∞ ) → ( 𝑘 ∈ ℕ → 𝐴 ∈ ( 0 [,) +∞ ) ) ) |
| 14 |
12 13
|
sylbir |
⊢ ( ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) → ( 𝑘 ∈ ℕ → 𝐴 ∈ ( 0 [,) +∞ ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑘 ∈ ℕ → 𝐴 ∈ ( 0 [,) +∞ ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 17 |
10 16
|
sselid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 18 |
17
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 19 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
| 20 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → 𝑘 ∈ ℕ ) |
| 21 |
20 16
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 23 |
19 22
|
esumpfinval |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 24 |
23
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 25 |
2 24
|
eqtrid |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐹 = ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 26 |
10 22
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ℂ ) |
| 27 |
19 26
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ℂ ) |
| 28 |
25 27
|
fvmpt2d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 30 |
5 6 7 18 29
|
isumclim3 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ Σ 𝑘 ∈ ℕ 𝐴 ) |
| 31 |
19 22
|
fsumrp0cl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 32 |
23 31
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 33 |
32 2
|
fmptd |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 35 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → 𝜑 ) |
| 36 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑚 ∈ ℕ ↦ 𝐵 ) = ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) |
| 37 |
|
eqcom |
⊢ ( 𝑘 = 𝑚 ↔ 𝑚 = 𝑘 ) |
| 38 |
|
eqcom |
⊢ ( 𝐴 = 𝐵 ↔ 𝐵 = 𝐴 ) |
| 39 |
4 37 38
|
3imtr3i |
⊢ ( 𝑚 = 𝑘 → 𝐵 = 𝐴 ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 = 𝑘 ) → 𝐵 = 𝐴 ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 42 |
36 40 41 3
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 ) |
| 43 |
35 42
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 ) |
| 44 |
16
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 45 |
|
elrege0 |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 46 |
44 45
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 47 |
46
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 48 |
|
ovex |
⊢ ( 1 ... 𝑛 ) ∈ V |
| 49 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
| 50 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 51 |
49 50 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 52 |
51
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 53 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... 𝑛 ) |
| 54 |
53
|
esumcl |
⊢ ( ( ( 1 ... 𝑛 ) ∈ V ∧ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 55 |
48 52 54
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 56 |
55 2
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 57 |
56
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐹 Fn ℕ ) |
| 59 |
|
1z |
⊢ 1 ∈ ℤ |
| 60 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 61 |
59 60
|
ax-mp |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) Fn ( ℤ≥ ‘ 1 ) |
| 62 |
5
|
fneq2i |
⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
| 63 |
61 62
|
mpbir |
⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) Fn ℕ |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) Fn ℕ ) |
| 65 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
| 66 |
20 42
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 ) |
| 67 |
65 66
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 ∈ ℕ ↦ 𝐵 ) ‘ 𝑘 ) = 𝐴 ) |
| 68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 69 |
68 5
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 70 |
67 69 26
|
fsumser |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) |
| 71 |
28 70
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) ‘ 𝑛 ) ) |
| 72 |
58 64 71
|
eqfnfvd |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐹 = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) ) |
| 74 |
73 7
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ 𝐵 ) ) ∈ dom ⇝ ) |
| 75 |
5 6 43 47 74
|
isumrecl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → Σ 𝑘 ∈ ℕ 𝐴 ∈ ℝ ) |
| 76 |
46
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ ) → 0 ≤ 𝐴 ) |
| 77 |
5 6 43 47 74 76
|
isumge0 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 0 ≤ Σ 𝑘 ∈ ℕ 𝐴 ) |
| 78 |
|
elrege0 |
⊢ ( Σ 𝑘 ∈ ℕ 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( Σ 𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ 0 ≤ Σ 𝑘 ∈ ℕ 𝐴 ) ) |
| 79 |
75 77 78
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → Σ 𝑘 ∈ ℕ 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 80 |
|
ssid |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,) +∞ ) |
| 81 |
1 34 79 80
|
lmlimxrge0 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ 𝑘 ∈ ℕ 𝐴 ↔ 𝐹 ⇝ Σ 𝑘 ∈ ℕ 𝐴 ) ) |
| 82 |
30 81
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ 𝑘 ∈ ℕ 𝐴 ) |
| 83 |
2 7
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ ) |
| 84 |
24
|
eleq1d |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ ↔ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ ↔ ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ ) ) |
| 86 |
83 85
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → ( 𝑛 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ∈ dom ⇝ ) |
| 87 |
44 4 86
|
esumpcvgval |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → Σ* 𝑘 ∈ ℕ 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 ) |
| 88 |
82 87
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ* 𝑘 ∈ ℕ 𝐴 ) |
| 89 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 90 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 91 |
90
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℤ ) |
| 92 |
|
uzid |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 93 |
|
peano2uz |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 94 |
91 92 93
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 95 |
|
simplll |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 96 |
95 16
|
sylancom |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 97 |
90 94 96
|
esumpmono |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ≤ Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ) |
| 98 |
28 23
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 99 |
98
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 100 |
|
oveq2 |
⊢ ( 𝑙 = 𝑛 → ( 1 ... 𝑙 ) = ( 1 ... 𝑛 ) ) |
| 101 |
|
esumeq1 |
⊢ ( ( 1 ... 𝑙 ) = ( 1 ... 𝑛 ) → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 102 |
100 101
|
syl |
⊢ ( 𝑙 = 𝑛 → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 103 |
102
|
cbvmptv |
⊢ ( 𝑙 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) = ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 104 |
2 103
|
eqtr4i |
⊢ 𝐹 = ( 𝑙 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 105 |
104
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → 𝐹 = ( 𝑙 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) ) |
| 106 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ( ¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = ( 𝑛 + 1 ) ) ) → 𝑙 = ( 𝑛 + 1 ) ) |
| 107 |
|
oveq2 |
⊢ ( 𝑙 = ( 𝑛 + 1 ) → ( 1 ... 𝑙 ) = ( 1 ... ( 𝑛 + 1 ) ) ) |
| 108 |
|
esumeq1 |
⊢ ( ( 1 ... 𝑙 ) = ( 1 ... ( 𝑛 + 1 ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ) |
| 109 |
106 107 108
|
3syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ( ¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = ( 𝑛 + 1 ) ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ) |
| 110 |
109
|
3anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑙 = ( 𝑛 + 1 ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ) |
| 111 |
90
|
peano2nnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 112 |
|
ovex |
⊢ ( 1 ... ( 𝑛 + 1 ) ) ∈ V |
| 113 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝜑 ) |
| 114 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) → 𝑘 ∈ ℕ ) |
| 115 |
114
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 116 |
113 115 3
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 117 |
116
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 118 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... ( 𝑛 + 1 ) ) |
| 119 |
118
|
esumcl |
⊢ ( ( ( 1 ... ( 𝑛 + 1 ) ) ∈ V ∧ ∀ 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 120 |
112 117 119
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 121 |
105 110 111 120
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) 𝐴 ) |
| 122 |
97 99 121
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ≤ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 123 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ ) |
| 124 |
1 89 122 123
|
lmdvglim |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 125 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) |
| 126 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ |
| 127 |
|
nnex |
⊢ ℕ ∈ V |
| 128 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → ℕ ∈ V ) |
| 129 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 130 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) |
| 131 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 132 |
|
inss1 |
⊢ ( 𝒫 ℕ ∩ Fin ) ⊆ 𝒫 ℕ |
| 133 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) |
| 134 |
132 133
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑥 ∈ 𝒫 ℕ ) |
| 135 |
134
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑥 ⊆ ℕ ) |
| 136 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝑥 ) |
| 137 |
135 136
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ ℕ ) |
| 138 |
131 137 16
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 139 |
138
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) |
| 140 |
|
esumpfinvallem |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ∧ ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) : 𝑥 ⟶ ( 0 [,) +∞ ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) ) ) |
| 141 |
130 139 140
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) ) ) |
| 142 |
|
inss2 |
⊢ ( 𝒫 ℕ ∩ Fin ) ⊆ Fin |
| 143 |
142 130
|
sselid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 144 |
131 137 17
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐴 ∈ ℂ ) |
| 145 |
143 144
|
gsumfsum |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) ) = Σ 𝑘 ∈ 𝑥 𝐴 ) |
| 146 |
141 145
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐴 ) ) = Σ 𝑘 ∈ 𝑥 𝐴 ) |
| 147 |
125 126 128 129 146
|
esumval |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) , ℝ* , < ) ) |
| 148 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) , ℝ* , < ) ) |
| 149 |
89 122 123
|
lmdvg |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ ∃ 𝑙 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑦 < ( 𝐹 ‘ 𝑛 ) ) |
| 150 |
149
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑙 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑦 < ( 𝐹 ‘ 𝑛 ) ) |
| 151 |
|
nnz |
⊢ ( 𝑙 ∈ ℕ → 𝑙 ∈ ℤ ) |
| 152 |
|
uzid |
⊢ ( 𝑙 ∈ ℤ → 𝑙 ∈ ( ℤ≥ ‘ 𝑙 ) ) |
| 153 |
151 152
|
syl |
⊢ ( 𝑙 ∈ ℕ → 𝑙 ∈ ( ℤ≥ ‘ 𝑙 ) ) |
| 154 |
|
simpr |
⊢ ( ( 𝑙 ∈ ℕ ∧ 𝑛 = 𝑙 ) → 𝑛 = 𝑙 ) |
| 155 |
154
|
fveq2d |
⊢ ( ( 𝑙 ∈ ℕ ∧ 𝑛 = 𝑙 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑙 ) ) |
| 156 |
155
|
breq2d |
⊢ ( ( 𝑙 ∈ ℕ ∧ 𝑛 = 𝑙 ) → ( 𝑦 < ( 𝐹 ‘ 𝑛 ) ↔ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ) |
| 157 |
153 156
|
rspcdv |
⊢ ( 𝑙 ∈ ℕ → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑦 < ( 𝐹 ‘ 𝑛 ) → 𝑦 < ( 𝐹 ‘ 𝑙 ) ) ) |
| 158 |
157
|
reximia |
⊢ ( ∃ 𝑙 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) 𝑦 < ( 𝐹 ‘ 𝑛 ) → ∃ 𝑙 ∈ ℕ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) |
| 159 |
150 158
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑙 ∈ ℕ 𝑦 < ( 𝐹 ‘ 𝑙 ) ) |
| 160 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → 𝑦 ∈ ℝ ) |
| 161 |
89
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 162 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → 𝑙 ∈ ℕ ) |
| 163 |
161 162
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝐹 ‘ 𝑙 ) ∈ ( 0 [,) +∞ ) ) |
| 164 |
8 163
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝐹 ‘ 𝑙 ) ∈ ℝ ) |
| 165 |
|
ltle |
⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑙 ) ∈ ℝ ) → ( 𝑦 < ( 𝐹 ‘ 𝑙 ) → 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
| 166 |
160 164 165
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝑦 < ( 𝐹 ‘ 𝑙 ) → 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ) ) |
| 167 |
|
oveq2 |
⊢ ( 𝑛 = 𝑙 → ( 1 ... 𝑛 ) = ( 1 ... 𝑙 ) ) |
| 168 |
|
esumeq1 |
⊢ ( ( 1 ... 𝑛 ) = ( 1 ... 𝑙 ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 169 |
167 168
|
syl |
⊢ ( 𝑛 = 𝑙 → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 170 |
|
esumex |
⊢ Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ V |
| 171 |
170
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ V ) |
| 172 |
2 169 162 171
|
fvmptd3 |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝐹 ‘ 𝑙 ) = Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 173 |
|
fzfid |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 1 ... 𝑙 ) ∈ Fin ) |
| 174 |
|
simp-4l |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
| 175 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑙 ) → 𝑘 ∈ ℕ ) |
| 176 |
175
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → 𝑘 ∈ ℕ ) |
| 177 |
174 176 16
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑙 ) ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 178 |
173 177
|
esumpfinval |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 = Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 179 |
172 178
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝐹 ‘ 𝑙 ) = Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 180 |
179
|
breq2d |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝑦 ≤ ( 𝐹 ‘ 𝑙 ) ↔ 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) ) |
| 181 |
166 180
|
sylibd |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑙 ∈ ℕ ) → ( 𝑦 < ( 𝐹 ‘ 𝑙 ) → 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) ) |
| 182 |
181
|
reximdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) → ( ∃ 𝑙 ∈ ℕ 𝑦 < ( 𝐹 ‘ 𝑙 ) → ∃ 𝑙 ∈ ℕ 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) ) |
| 183 |
159 182
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑙 ∈ ℕ 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 184 |
|
fzssuz |
⊢ ( 1 ... 𝑙 ) ⊆ ( ℤ≥ ‘ 1 ) |
| 185 |
184 5
|
sseqtrri |
⊢ ( 1 ... 𝑙 ) ⊆ ℕ |
| 186 |
|
ovex |
⊢ ( 1 ... 𝑙 ) ∈ V |
| 187 |
186
|
elpw |
⊢ ( ( 1 ... 𝑙 ) ∈ 𝒫 ℕ ↔ ( 1 ... 𝑙 ) ⊆ ℕ ) |
| 188 |
185 187
|
mpbir |
⊢ ( 1 ... 𝑙 ) ∈ 𝒫 ℕ |
| 189 |
|
fzfi |
⊢ ( 1 ... 𝑙 ) ∈ Fin |
| 190 |
|
elin |
⊢ ( ( 1 ... 𝑙 ) ∈ ( 𝒫 ℕ ∩ Fin ) ↔ ( ( 1 ... 𝑙 ) ∈ 𝒫 ℕ ∧ ( 1 ... 𝑙 ) ∈ Fin ) ) |
| 191 |
188 189 190
|
mpbir2an |
⊢ ( 1 ... 𝑙 ) ∈ ( 𝒫 ℕ ∩ Fin ) |
| 192 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ V |
| 193 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) = ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) |
| 194 |
|
sumeq1 |
⊢ ( 𝑥 = ( 1 ... 𝑙 ) → Σ 𝑘 ∈ 𝑥 𝐴 = Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) |
| 195 |
193 194
|
elrnmpt1s |
⊢ ( ( ( 1 ... 𝑙 ) ∈ ( 𝒫 ℕ ∩ Fin ) ∧ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ V ) → Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) ) |
| 196 |
191 192 195
|
mp2an |
⊢ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) |
| 197 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 |
| 198 |
|
breq2 |
⊢ ( 𝑧 = Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) ) |
| 199 |
197 198
|
rspce |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) ∧ 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ) |
| 200 |
196 199
|
mpan |
⊢ ( 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ) |
| 201 |
200
|
rexlimivw |
⊢ ( ∃ 𝑙 ∈ ℕ 𝑦 ≤ Σ 𝑘 ∈ ( 1 ... 𝑙 ) 𝐴 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ) |
| 202 |
183 201
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ) |
| 203 |
202
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ) |
| 204 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) |
| 205 |
142 204
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 206 |
138
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
| 207 |
8 206
|
sselid |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝐴 ∈ ℝ ) |
| 208 |
205 207
|
fsumrecl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐴 ∈ ℝ ) |
| 209 |
208
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ) → Σ 𝑘 ∈ 𝑥 𝐴 ∈ ℝ* ) |
| 210 |
209
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) : ( 𝒫 ℕ ∩ Fin ) ⟶ ℝ* ) |
| 211 |
|
frn |
⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) : ( 𝒫 ℕ ∩ Fin ) ⟶ ℝ* → ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) ⊆ ℝ* ) |
| 212 |
|
supxrunb1 |
⊢ ( ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) ⊆ ℝ* → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) , ℝ* , < ) = +∞ ) ) |
| 213 |
210 211 212
|
3syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ∀ 𝑦 ∈ ℝ ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) 𝑦 ≤ 𝑧 ↔ sup ( ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) , ℝ* , < ) = +∞ ) ) |
| 214 |
203 213
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → sup ( ran ( 𝑥 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ Σ 𝑘 ∈ 𝑥 𝐴 ) , ℝ* , < ) = +∞ ) |
| 215 |
148 214
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ* 𝑘 ∈ ℕ 𝐴 = +∞ ) |
| 216 |
124 215
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ* 𝑘 ∈ ℕ 𝐴 ) |
| 217 |
88 216
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ* 𝑘 ∈ ℕ 𝐴 ) |
| 218 |
2
|
reseq1i |
⊢ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) |
| 219 |
|
eleq1w |
⊢ ( 𝑙 = 𝑘 → ( 𝑙 ∈ ℕ ↔ 𝑘 ∈ ℕ ) ) |
| 220 |
219
|
anbi2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) ) |
| 221 |
|
sbequ12r |
⊢ ( 𝑙 = 𝑘 → ( [ 𝑙 / 𝑘 ] 𝐴 = +∞ ↔ 𝐴 = +∞ ) ) |
| 222 |
220 221
|
anbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝐴 = +∞ ) ) ) |
| 223 |
|
fveq2 |
⊢ ( 𝑙 = 𝑘 → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 224 |
223
|
reseq2d |
⊢ ( 𝑙 = 𝑘 → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 225 |
223
|
xpeq1d |
⊢ ( 𝑙 = 𝑘 → ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) |
| 226 |
224 225
|
eqeq12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) ↔ ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) ) |
| 227 |
222 226
|
imbi12d |
⊢ ( 𝑙 = 𝑘 → ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) ) ↔ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) ) ) |
| 228 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑙 ∈ ℕ ) |
| 229 |
|
nfs1v |
⊢ Ⅎ 𝑘 [ 𝑙 / 𝑘 ] 𝐴 = +∞ |
| 230 |
228 229
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) |
| 231 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) |
| 232 |
230 231
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) |
| 233 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ( 1 ... 𝑛 ) ∈ V ) |
| 234 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
| 235 |
20
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 236 |
234 235 3
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 237 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑙 ∈ ℕ ) |
| 238 |
|
elnnuz |
⊢ ( 𝑙 ∈ ℕ ↔ 𝑙 ∈ ( ℤ≥ ‘ 1 ) ) |
| 239 |
|
eluzfz |
⊢ ( ( 𝑙 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑙 ∈ ( 1 ... 𝑛 ) ) |
| 240 |
238 239
|
sylanb |
⊢ ( ( 𝑙 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑙 ∈ ( 1 ... 𝑛 ) ) |
| 241 |
237 240
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → 𝑙 ∈ ( 1 ... 𝑛 ) ) |
| 242 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) |
| 243 |
|
sbequ12 |
⊢ ( 𝑘 = 𝑙 → ( 𝐴 = +∞ ↔ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ) |
| 244 |
229 243
|
rspce |
⊢ ( ( 𝑙 ∈ ( 1 ... 𝑛 ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → ∃ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) |
| 245 |
241 242 244
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → ∃ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) |
| 246 |
232 233 236 245
|
esumpinfval |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) |
| 247 |
246
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) |
| 248 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑙 ) ) |
| 249 |
|
mpteq12 |
⊢ ( ( ( ℤ≥ ‘ 𝑙 ) = ( ℤ≥ ‘ 𝑙 ) ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ +∞ ) ) |
| 250 |
248 249
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ +∞ ) ) |
| 251 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → 𝑙 ∈ ℕ ) |
| 252 |
|
uznnssnn |
⊢ ( 𝑙 ∈ ℕ → ( ℤ≥ ‘ 𝑙 ) ⊆ ℕ ) |
| 253 |
|
resmpt |
⊢ ( ( ℤ≥ ‘ 𝑙 ) ⊆ ℕ → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 254 |
251 252 253
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 255 |
254
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 256 |
|
fconstmpt |
⊢ ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ +∞ ) |
| 257 |
256
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) → ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) = ( 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) ↦ +∞ ) ) |
| 258 |
250 255 257
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑙 ) Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) ) |
| 259 |
247 258
|
mpdan |
⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ ℕ ) ∧ [ 𝑙 / 𝑘 ] 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑙 ) ) = ( ( ℤ≥ ‘ 𝑙 ) × { +∞ } ) ) |
| 260 |
227 259
|
chvarvv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝐴 = +∞ ) → ( ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) |
| 261 |
218 260
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝐴 = +∞ ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) |
| 262 |
261
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 = +∞ → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) ) |
| 263 |
262
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℕ 𝐴 = +∞ → ∃ 𝑘 ∈ ℕ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) ) |
| 264 |
263
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) → ∃ 𝑘 ∈ ℕ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) |
| 265 |
|
xrge0topn |
⊢ ( TopOpen ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 266 |
1 265
|
eqtri |
⊢ 𝐽 = ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) |
| 267 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
| 268 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 269 |
|
resttopon |
⊢ ( ( ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 270 |
267 268 269
|
mp2an |
⊢ ( ( ordTop ‘ ≤ ) ↾t ( 0 [,] +∞ ) ) ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 271 |
266 270
|
eqeltri |
⊢ 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) |
| 272 |
271
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ) |
| 273 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 274 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 275 |
|
0lepnf |
⊢ 0 ≤ +∞ |
| 276 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
| 277 |
273 274 275 276
|
mp3an |
⊢ +∞ ∈ ( 0 [,] +∞ ) |
| 278 |
277
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
| 279 |
41
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 280 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑘 ) = ( ℤ≥ ‘ 𝑘 ) |
| 281 |
280
|
lmconst |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( 0 [,] +∞ ) ) ∧ +∞ ∈ ( 0 [,] +∞ ) ∧ 𝑘 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 282 |
272 278 279 281
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 283 |
|
breq1 |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) → ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ↔ ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) ) |
| 284 |
283
|
biimprd |
⊢ ( ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) → ( ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ( ⇝𝑡 ‘ 𝐽 ) +∞ → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) ) |
| 285 |
282 284
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) → ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 286 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0 [,] +∞ ) ∈ V ) |
| 287 |
|
cnex |
⊢ ℂ ∈ V |
| 288 |
287
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ℂ ∈ V ) |
| 289 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 290 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
| 291 |
290
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ℕ ⊆ ℂ ) |
| 292 |
|
elpm2r |
⊢ ( ( ( ( 0 [,] +∞ ) ∈ V ∧ ℂ ∈ V ) ∧ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ∧ ℕ ⊆ ℂ ) ) → 𝐹 ∈ ( ( 0 [,] +∞ ) ↑pm ℂ ) ) |
| 293 |
286 288 289 291 292
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 ∈ ( ( 0 [,] +∞ ) ↑pm ℂ ) ) |
| 294 |
272 293 279
|
lmres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ↔ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) ) |
| 295 |
294
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) ( ⇝𝑡 ‘ 𝐽 ) +∞ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 296 |
285 295
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 297 |
296
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ ( 𝐹 ↾ ( ℤ≥ ‘ 𝑘 ) ) = ( ( ℤ≥ ‘ 𝑘 ) × { +∞ } ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 298 |
264 297
|
syldan |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) +∞ ) |
| 299 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 300 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ ℕ 𝐴 = +∞ |
| 301 |
299 300
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) |
| 302 |
127
|
a1i |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) → ℕ ∈ V ) |
| 303 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 304 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) → ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) |
| 305 |
301 302 303 304
|
esumpinfval |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) → Σ* 𝑘 ∈ ℕ 𝐴 = +∞ ) |
| 306 |
298 305
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ* 𝑘 ∈ ℕ 𝐴 ) |
| 307 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ ℕ ↔ 𝑚 ∈ ℕ ) ) |
| 308 |
307
|
anbi2d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑚 ∈ ℕ ) ) ) |
| 309 |
4
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
| 310 |
308 309
|
imbi12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐵 ∈ ( 0 [,] +∞ ) ) ) ) |
| 311 |
310 3
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 312 |
|
eliccelico |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ( 0 [,) +∞ ) ∨ 𝐵 = +∞ ) ) ) |
| 313 |
273 274 275 312
|
mp3an |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ( 0 [,) +∞ ) ∨ 𝐵 = +∞ ) ) |
| 314 |
311 313
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐵 ∈ ( 0 [,) +∞ ) ∨ 𝐵 = +∞ ) ) |
| 315 |
314
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝐵 ∈ ( 0 [,) +∞ ) ∨ 𝐵 = +∞ ) ) |
| 316 |
|
r19.30 |
⊢ ( ∀ 𝑚 ∈ ℕ ( 𝐵 ∈ ( 0 [,) +∞ ) ∨ 𝐵 = +∞ ) → ( ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ∨ ∃ 𝑚 ∈ ℕ 𝐵 = +∞ ) ) |
| 317 |
315 316
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ∨ ∃ 𝑚 ∈ ℕ 𝐵 = +∞ ) ) |
| 318 |
4
|
eqeq1d |
⊢ ( 𝑘 = 𝑚 → ( 𝐴 = +∞ ↔ 𝐵 = +∞ ) ) |
| 319 |
318
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ↔ ∃ 𝑚 ∈ ℕ 𝐵 = +∞ ) |
| 320 |
319
|
orbi2i |
⊢ ( ( ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ∨ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) ↔ ( ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ∨ ∃ 𝑚 ∈ ℕ 𝐵 = +∞ ) ) |
| 321 |
317 320
|
sylibr |
⊢ ( 𝜑 → ( ∀ 𝑚 ∈ ℕ 𝐵 ∈ ( 0 [,) +∞ ) ∨ ∃ 𝑘 ∈ ℕ 𝐴 = +∞ ) ) |
| 322 |
217 306 321
|
mpjaodan |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) Σ* 𝑘 ∈ ℕ 𝐴 ) |