Metamath Proof Explorer


Theorem esumcvg

Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 . (Contributed by Thierry Arnoux, 5-Sep-2017)

Ref Expression
Hypotheses esumcvg.j J = TopOpen 𝑠 * 𝑠 0 +∞
esumcvg.f F = n * k = 1 n A
esumcvg.a φ k A 0 +∞
esumcvg.m k = m A = B
Assertion esumcvg φ F t J * k A

Proof

Step Hyp Ref Expression
1 esumcvg.j J = TopOpen 𝑠 * 𝑠 0 +∞
2 esumcvg.f F = n * k = 1 n A
3 esumcvg.a φ k A 0 +∞
4 esumcvg.m k = m A = B
5 nnuz = 1
6 1zzd φ m B 0 +∞ F dom 1
7 simpr φ m B 0 +∞ F dom F dom
8 rge0ssre 0 +∞
9 ax-resscn
10 8 9 sstri 0 +∞
11 4 eleq1d k = m A 0 +∞ B 0 +∞
12 11 cbvralvw k A 0 +∞ m B 0 +∞
13 rsp k A 0 +∞ k A 0 +∞
14 12 13 sylbir m B 0 +∞ k A 0 +∞
15 14 adantl φ m B 0 +∞ k A 0 +∞
16 15 imp φ m B 0 +∞ k A 0 +∞
17 10 16 sselid φ m B 0 +∞ k A
18 17 adantlr φ m B 0 +∞ F dom k A
19 fzfid φ m B 0 +∞ n 1 n Fin
20 elfznn k 1 n k
21 20 16 sylan2 φ m B 0 +∞ k 1 n A 0 +∞
22 21 adantlr φ m B 0 +∞ n k 1 n A 0 +∞
23 19 22 esumpfinval φ m B 0 +∞ n * k = 1 n A = k = 1 n A
24 23 mpteq2dva φ m B 0 +∞ n * k = 1 n A = n k = 1 n A
25 2 24 eqtrid φ m B 0 +∞ F = n k = 1 n A
26 10 22 sselid φ m B 0 +∞ n k 1 n A
27 19 26 fsumcl φ m B 0 +∞ n k = 1 n A
28 25 27 fvmpt2d φ m B 0 +∞ n F n = k = 1 n A
29 28 adantlr φ m B 0 +∞ F dom n F n = k = 1 n A
30 5 6 7 18 29 isumclim3 φ m B 0 +∞ F dom F k A
31 19 22 fsumrp0cl φ m B 0 +∞ n k = 1 n A 0 +∞
32 23 31 eqeltrd φ m B 0 +∞ n * k = 1 n A 0 +∞
33 32 2 fmptd φ m B 0 +∞ F : 0 +∞
34 33 adantr φ m B 0 +∞ F dom F : 0 +∞
35 simplll φ m B 0 +∞ F dom k φ
36 eqidd φ k m B = m B
37 eqcom k = m m = k
38 eqcom A = B B = A
39 4 37 38 3imtr3i m = k B = A
40 39 adantl φ k m = k B = A
41 simpr φ k k
42 36 40 41 3 fvmptd φ k m B k = A
43 35 42 sylancom φ m B 0 +∞ F dom k m B k = A
44 16 adantlr φ m B 0 +∞ F dom k A 0 +∞
45 elrege0 A 0 +∞ A 0 A
46 44 45 sylib φ m B 0 +∞ F dom k A 0 A
47 46 simpld φ m B 0 +∞ F dom k A
48 ovex 1 n V
49 simpll φ n k 1 n φ
50 20 adantl φ n k 1 n k
51 49 50 3 syl2anc φ n k 1 n A 0 +∞
52 51 ralrimiva φ n k 1 n A 0 +∞
53 nfcv _ k 1 n
54 53 esumcl 1 n V k 1 n A 0 +∞ * k = 1 n A 0 +∞
55 48 52 54 sylancr φ n * k = 1 n A 0 +∞
56 55 2 fmptd φ F : 0 +∞
57 56 ffnd φ F Fn
58 57 adantr φ m B 0 +∞ F Fn
59 1z 1
60 seqfn 1 seq 1 + m B Fn 1
61 59 60 ax-mp seq 1 + m B Fn 1
62 5 fneq2i seq 1 + m B Fn seq 1 + m B Fn 1
63 61 62 mpbir seq 1 + m B Fn
64 63 a1i φ m B 0 +∞ seq 1 + m B Fn
65 simplll φ m B 0 +∞ n k 1 n φ
66 20 42 sylan2 φ k 1 n m B k = A
67 65 66 sylancom φ m B 0 +∞ n k 1 n m B k = A
68 simpr φ m B 0 +∞ n n
69 68 5 eleqtrdi φ m B 0 +∞ n n 1
70 67 69 26 fsumser φ m B 0 +∞ n k = 1 n A = seq 1 + m B n
71 28 70 eqtrd φ m B 0 +∞ n F n = seq 1 + m B n
72 58 64 71 eqfnfvd φ m B 0 +∞ F = seq 1 + m B
73 72 adantr φ m B 0 +∞ F dom F = seq 1 + m B
74 73 7 eqeltrrd φ m B 0 +∞ F dom seq 1 + m B dom
75 5 6 43 47 74 isumrecl φ m B 0 +∞ F dom k A
76 46 simprd φ m B 0 +∞ F dom k 0 A
77 5 6 43 47 74 76 isumge0 φ m B 0 +∞ F dom 0 k A
78 elrege0 k A 0 +∞ k A 0 k A
79 75 77 78 sylanbrc φ m B 0 +∞ F dom k A 0 +∞
80 ssid 0 +∞ 0 +∞
81 1 34 79 80 lmlimxrge0 φ m B 0 +∞ F dom F t J k A F k A
82 30 81 mpbird φ m B 0 +∞ F dom F t J k A
83 2 7 eqeltrrid φ m B 0 +∞ F dom n * k = 1 n A dom
84 24 eleq1d φ m B 0 +∞ n * k = 1 n A dom n k = 1 n A dom
85 84 adantr φ m B 0 +∞ F dom n * k = 1 n A dom n k = 1 n A dom
86 83 85 mpbid φ m B 0 +∞ F dom n k = 1 n A dom
87 44 4 86 esumpcvgval φ m B 0 +∞ F dom * k A = k A
88 82 87 breqtrrd φ m B 0 +∞ F dom F t J * k A
89 33 adantr φ m B 0 +∞ ¬ F dom F : 0 +∞
90 simpr φ m B 0 +∞ ¬ F dom n n
91 90 nnzd φ m B 0 +∞ ¬ F dom n n
92 uzid n n n
93 peano2uz n n n + 1 n
94 91 92 93 3syl φ m B 0 +∞ ¬ F dom n n + 1 n
95 simplll φ m B 0 +∞ ¬ F dom n k φ m B 0 +∞
96 95 16 sylancom φ m B 0 +∞ ¬ F dom n k A 0 +∞
97 90 94 96 esumpmono φ m B 0 +∞ ¬ F dom n * k = 1 n A * k = 1 n + 1 A
98 28 23 eqtr4d φ m B 0 +∞ n F n = * k = 1 n A
99 98 adantlr φ m B 0 +∞ ¬ F dom n F n = * k = 1 n A
100 oveq2 l = n 1 l = 1 n
101 esumeq1 1 l = 1 n * k = 1 l A = * k = 1 n A
102 100 101 syl l = n * k = 1 l A = * k = 1 n A
103 102 cbvmptv l * k = 1 l A = n * k = 1 n A
104 2 103 eqtr4i F = l * k = 1 l A
105 104 a1i φ m B 0 +∞ ¬ F dom n F = l * k = 1 l A
106 simpr3 φ m B 0 +∞ ¬ F dom n l = n + 1 l = n + 1
107 oveq2 l = n + 1 1 l = 1 n + 1
108 esumeq1 1 l = 1 n + 1 * k = 1 l A = * k = 1 n + 1 A
109 106 107 108 3syl φ m B 0 +∞ ¬ F dom n l = n + 1 * k = 1 l A = * k = 1 n + 1 A
110 109 3anassrs φ m B 0 +∞ ¬ F dom n l = n + 1 * k = 1 l A = * k = 1 n + 1 A
111 90 peano2nnd φ m B 0 +∞ ¬ F dom n n + 1
112 ovex 1 n + 1 V
113 simp-4l φ m B 0 +∞ ¬ F dom n k 1 n + 1 φ
114 elfznn k 1 n + 1 k
115 114 adantl φ m B 0 +∞ ¬ F dom n k 1 n + 1 k
116 113 115 3 syl2anc φ m B 0 +∞ ¬ F dom n k 1 n + 1 A 0 +∞
117 116 ralrimiva φ m B 0 +∞ ¬ F dom n k 1 n + 1 A 0 +∞
118 nfcv _ k 1 n + 1
119 118 esumcl 1 n + 1 V k 1 n + 1 A 0 +∞ * k = 1 n + 1 A 0 +∞
120 112 117 119 sylancr φ m B 0 +∞ ¬ F dom n * k = 1 n + 1 A 0 +∞
121 105 110 111 120 fvmptd φ m B 0 +∞ ¬ F dom n F n + 1 = * k = 1 n + 1 A
122 97 99 121 3brtr4d φ m B 0 +∞ ¬ F dom n F n F n + 1
123 simpr φ m B 0 +∞ ¬ F dom ¬ F dom
124 1 89 122 123 lmdvglim φ m B 0 +∞ ¬ F dom F t J +∞
125 nfv k φ m B 0 +∞
126 nfcv _ k
127 nnex V
128 127 a1i φ m B 0 +∞ V
129 3 adantlr φ m B 0 +∞ k A 0 +∞
130 simpr φ m B 0 +∞ x 𝒫 Fin x 𝒫 Fin
131 simpll φ m B 0 +∞ x 𝒫 Fin k x φ m B 0 +∞
132 inss1 𝒫 Fin 𝒫
133 simplr φ m B 0 +∞ x 𝒫 Fin k x x 𝒫 Fin
134 132 133 sselid φ m B 0 +∞ x 𝒫 Fin k x x 𝒫
135 134 elpwid φ m B 0 +∞ x 𝒫 Fin k x x
136 simpr φ m B 0 +∞ x 𝒫 Fin k x k x
137 135 136 sseldd φ m B 0 +∞ x 𝒫 Fin k x k
138 131 137 16 syl2anc φ m B 0 +∞ x 𝒫 Fin k x A 0 +∞
139 138 fmpttd φ m B 0 +∞ x 𝒫 Fin k x A : x 0 +∞
140 esumpfinvallem x 𝒫 Fin k x A : x 0 +∞ fld k x A = 𝑠 * 𝑠 0 +∞ k x A
141 130 139 140 syl2anc φ m B 0 +∞ x 𝒫 Fin fld k x A = 𝑠 * 𝑠 0 +∞ k x A
142 inss2 𝒫 Fin Fin
143 142 130 sselid φ m B 0 +∞ x 𝒫 Fin x Fin
144 131 137 17 syl2anc φ m B 0 +∞ x 𝒫 Fin k x A
145 143 144 gsumfsum φ m B 0 +∞ x 𝒫 Fin fld k x A = k x A
146 141 145 eqtr3d φ m B 0 +∞ x 𝒫 Fin 𝑠 * 𝑠 0 +∞ k x A = k x A
147 125 126 128 129 146 esumval φ m B 0 +∞ * k A = sup ran x 𝒫 Fin k x A * <
148 147 adantr φ m B 0 +∞ ¬ F dom * k A = sup ran x 𝒫 Fin k x A * <
149 89 122 123 lmdvg φ m B 0 +∞ ¬ F dom y l n l y < F n
150 149 r19.21bi φ m B 0 +∞ ¬ F dom y l n l y < F n
151 nnz l l
152 uzid l l l
153 151 152 syl l l l
154 simpr l n = l n = l
155 154 fveq2d l n = l F n = F l
156 155 breq2d l n = l y < F n y < F l
157 153 156 rspcdv l n l y < F n y < F l
158 157 reximia l n l y < F n l y < F l
159 150 158 syl φ m B 0 +∞ ¬ F dom y l y < F l
160 simplr φ m B 0 +∞ ¬ F dom y l y
161 89 ad2antrr φ m B 0 +∞ ¬ F dom y l F : 0 +∞
162 simpr φ m B 0 +∞ ¬ F dom y l l
163 161 162 ffvelrnd φ m B 0 +∞ ¬ F dom y l F l 0 +∞
164 8 163 sselid φ m B 0 +∞ ¬ F dom y l F l
165 ltle y F l y < F l y F l
166 160 164 165 syl2anc φ m B 0 +∞ ¬ F dom y l y < F l y F l
167 oveq2 n = l 1 n = 1 l
168 esumeq1 1 n = 1 l * k = 1 n A = * k = 1 l A
169 167 168 syl n = l * k = 1 n A = * k = 1 l A
170 esumex * k = 1 l A V
171 170 a1i φ m B 0 +∞ ¬ F dom y l * k = 1 l A V
172 2 169 162 171 fvmptd3 φ m B 0 +∞ ¬ F dom y l F l = * k = 1 l A
173 fzfid φ m B 0 +∞ ¬ F dom y l 1 l Fin
174 simp-4l φ m B 0 +∞ ¬ F dom y l k 1 l φ m B 0 +∞
175 elfznn k 1 l k
176 175 adantl φ m B 0 +∞ ¬ F dom y l k 1 l k
177 174 176 16 syl2anc φ m B 0 +∞ ¬ F dom y l k 1 l A 0 +∞
178 173 177 esumpfinval φ m B 0 +∞ ¬ F dom y l * k = 1 l A = k = 1 l A
179 172 178 eqtrd φ m B 0 +∞ ¬ F dom y l F l = k = 1 l A
180 179 breq2d φ m B 0 +∞ ¬ F dom y l y F l y k = 1 l A
181 166 180 sylibd φ m B 0 +∞ ¬ F dom y l y < F l y k = 1 l A
182 181 reximdva φ m B 0 +∞ ¬ F dom y l y < F l l y k = 1 l A
183 159 182 mpd φ m B 0 +∞ ¬ F dom y l y k = 1 l A
184 fzssuz 1 l 1
185 184 5 sseqtrri 1 l
186 ovex 1 l V
187 186 elpw 1 l 𝒫 1 l
188 185 187 mpbir 1 l 𝒫
189 fzfi 1 l Fin
190 elin 1 l 𝒫 Fin 1 l 𝒫 1 l Fin
191 188 189 190 mpbir2an 1 l 𝒫 Fin
192 sumex k = 1 l A V
193 eqid x 𝒫 Fin k x A = x 𝒫 Fin k x A
194 sumeq1 x = 1 l k x A = k = 1 l A
195 193 194 elrnmpt1s 1 l 𝒫 Fin k = 1 l A V k = 1 l A ran x 𝒫 Fin k x A
196 191 192 195 mp2an k = 1 l A ran x 𝒫 Fin k x A
197 nfv z y k = 1 l A
198 breq2 z = k = 1 l A y z y k = 1 l A
199 197 198 rspce k = 1 l A ran x 𝒫 Fin k x A y k = 1 l A z ran x 𝒫 Fin k x A y z
200 196 199 mpan y k = 1 l A z ran x 𝒫 Fin k x A y z
201 200 rexlimivw l y k = 1 l A z ran x 𝒫 Fin k x A y z
202 183 201 syl φ m B 0 +∞ ¬ F dom y z ran x 𝒫 Fin k x A y z
203 202 ralrimiva φ m B 0 +∞ ¬ F dom y z ran x 𝒫 Fin k x A y z
204 simpr φ m B 0 +∞ ¬ F dom x 𝒫 Fin x 𝒫 Fin
205 142 204 sselid φ m B 0 +∞ ¬ F dom x 𝒫 Fin x Fin
206 138 adantllr φ m B 0 +∞ ¬ F dom x 𝒫 Fin k x A 0 +∞
207 8 206 sselid φ m B 0 +∞ ¬ F dom x 𝒫 Fin k x A
208 205 207 fsumrecl φ m B 0 +∞ ¬ F dom x 𝒫 Fin k x A
209 208 rexrd φ m B 0 +∞ ¬ F dom x 𝒫 Fin k x A *
210 209 fmpttd φ m B 0 +∞ ¬ F dom x 𝒫 Fin k x A : 𝒫 Fin *
211 frn x 𝒫 Fin k x A : 𝒫 Fin * ran x 𝒫 Fin k x A *
212 supxrunb1 ran x 𝒫 Fin k x A * y z ran x 𝒫 Fin k x A y z sup ran x 𝒫 Fin k x A * < = +∞
213 210 211 212 3syl φ m B 0 +∞ ¬ F dom y z ran x 𝒫 Fin k x A y z sup ran x 𝒫 Fin k x A * < = +∞
214 203 213 mpbid φ m B 0 +∞ ¬ F dom sup ran x 𝒫 Fin k x A * < = +∞
215 148 214 eqtrd φ m B 0 +∞ ¬ F dom * k A = +∞
216 124 215 breqtrrd φ m B 0 +∞ ¬ F dom F t J * k A
217 88 216 pm2.61dan φ m B 0 +∞ F t J * k A
218 2 reseq1i F k = n * k = 1 n A k
219 eleq1w l = k l k
220 219 anbi2d l = k φ l φ k
221 sbequ12r l = k l k A = +∞ A = +∞
222 220 221 anbi12d l = k φ l l k A = +∞ φ k A = +∞
223 fveq2 l = k l = k
224 223 reseq2d l = k n * k = 1 n A l = n * k = 1 n A k
225 223 xpeq1d l = k l × +∞ = k × +∞
226 224 225 eqeq12d l = k n * k = 1 n A l = l × +∞ n * k = 1 n A k = k × +∞
227 222 226 imbi12d l = k φ l l k A = +∞ n * k = 1 n A l = l × +∞ φ k A = +∞ n * k = 1 n A k = k × +∞
228 nfv k φ l
229 nfs1v k l k A = +∞
230 228 229 nfan k φ l l k A = +∞
231 nfv k n l
232 230 231 nfan k φ l l k A = +∞ n l
233 ovexd φ l l k A = +∞ n l 1 n V
234 simp-4l φ l l k A = +∞ n l k 1 n φ
235 20 adantl φ l l k A = +∞ n l k 1 n k
236 234 235 3 syl2anc φ l l k A = +∞ n l k 1 n A 0 +∞
237 simpllr φ l l k A = +∞ n l l
238 elnnuz l l 1
239 eluzfz l 1 n l l 1 n
240 238 239 sylanb l n l l 1 n
241 237 240 sylancom φ l l k A = +∞ n l l 1 n
242 simplr φ l l k A = +∞ n l l k A = +∞
243 sbequ12 k = l A = +∞ l k A = +∞
244 229 243 rspce l 1 n l k A = +∞ k 1 n A = +∞
245 241 242 244 syl2anc φ l l k A = +∞ n l k 1 n A = +∞
246 232 233 236 245 esumpinfval φ l l k A = +∞ n l * k = 1 n A = +∞
247 246 ralrimiva φ l l k A = +∞ n l * k = 1 n A = +∞
248 eqidd φ l l k A = +∞ l = l
249 mpteq12 l = l n l * k = 1 n A = +∞ n l * k = 1 n A = n l +∞
250 248 249 sylan φ l l k A = +∞ n l * k = 1 n A = +∞ n l * k = 1 n A = n l +∞
251 simplr φ l l k A = +∞ l
252 uznnssnn l l
253 resmpt l n * k = 1 n A l = n l * k = 1 n A
254 251 252 253 3syl φ l l k A = +∞ n * k = 1 n A l = n l * k = 1 n A
255 254 adantr φ l l k A = +∞ n l * k = 1 n A = +∞ n * k = 1 n A l = n l * k = 1 n A
256 fconstmpt l × +∞ = n l +∞
257 256 a1i φ l l k A = +∞ n l * k = 1 n A = +∞ l × +∞ = n l +∞
258 250 255 257 3eqtr4d φ l l k A = +∞ n l * k = 1 n A = +∞ n * k = 1 n A l = l × +∞
259 247 258 mpdan φ l l k A = +∞ n * k = 1 n A l = l × +∞
260 227 259 chvarvv φ k A = +∞ n * k = 1 n A k = k × +∞
261 218 260 eqtrid φ k A = +∞ F k = k × +∞
262 261 ex φ k A = +∞ F k = k × +∞
263 262 reximdva φ k A = +∞ k F k = k × +∞
264 263 imp φ k A = +∞ k F k = k × +∞
265 xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞
266 1 265 eqtri J = ordTop 𝑡 0 +∞
267 letopon ordTop TopOn *
268 iccssxr 0 +∞ *
269 resttopon ordTop TopOn * 0 +∞ * ordTop 𝑡 0 +∞ TopOn 0 +∞
270 267 268 269 mp2an ordTop 𝑡 0 +∞ TopOn 0 +∞
271 266 270 eqeltri J TopOn 0 +∞
272 271 a1i φ k J TopOn 0 +∞
273 0xr 0 *
274 pnfxr +∞ *
275 0lepnf 0 +∞
276 ubicc2 0 * +∞ * 0 +∞ +∞ 0 +∞
277 273 274 275 276 mp3an +∞ 0 +∞
278 277 a1i φ k +∞ 0 +∞
279 41 nnzd φ k k
280 eqid k = k
281 280 lmconst J TopOn 0 +∞ +∞ 0 +∞ k k × +∞ t J +∞
282 272 278 279 281 syl3anc φ k k × +∞ t J +∞
283 breq1 F k = k × +∞ F k t J +∞ k × +∞ t J +∞
284 283 biimprd F k = k × +∞ k × +∞ t J +∞ F k t J +∞
285 282 284 mpan9 φ k F k = k × +∞ F k t J +∞
286 ovexd φ k 0 +∞ V
287 cnex V
288 287 a1i φ k V
289 56 adantr φ k F : 0 +∞
290 nnsscn
291 290 a1i φ k
292 elpm2r 0 +∞ V V F : 0 +∞ F 0 +∞ 𝑝𝑚
293 286 288 289 291 292 syl22anc φ k F 0 +∞ 𝑝𝑚
294 272 293 279 lmres φ k F t J +∞ F k t J +∞
295 294 biimpar φ k F k t J +∞ F t J +∞
296 285 295 syldan φ k F k = k × +∞ F t J +∞
297 296 r19.29an φ k F k = k × +∞ F t J +∞
298 264 297 syldan φ k A = +∞ F t J +∞
299 nfv k φ
300 nfre1 k k A = +∞
301 299 300 nfan k φ k A = +∞
302 127 a1i φ k A = +∞ V
303 3 adantlr φ k A = +∞ k A 0 +∞
304 simpr φ k A = +∞ k A = +∞
305 301 302 303 304 esumpinfval φ k A = +∞ * k A = +∞
306 298 305 breqtrrd φ k A = +∞ F t J * k A
307 eleq1w k = m k m
308 307 anbi2d k = m φ k φ m
309 4 eleq1d k = m A 0 +∞ B 0 +∞
310 308 309 imbi12d k = m φ k A 0 +∞ φ m B 0 +∞
311 310 3 chvarvv φ m B 0 +∞
312 eliccelico 0 * +∞ * 0 +∞ B 0 +∞ B 0 +∞ B = +∞
313 273 274 275 312 mp3an B 0 +∞ B 0 +∞ B = +∞
314 311 313 sylib φ m B 0 +∞ B = +∞
315 314 ralrimiva φ m B 0 +∞ B = +∞
316 r19.30 m B 0 +∞ B = +∞ m B 0 +∞ m B = +∞
317 315 316 syl φ m B 0 +∞ m B = +∞
318 4 eqeq1d k = m A = +∞ B = +∞
319 318 cbvrexvw k A = +∞ m B = +∞
320 319 orbi2i m B 0 +∞ k A = +∞ m B 0 +∞ m B = +∞
321 317 320 sylibr φ m B 0 +∞ k A = +∞
322 217 306 321 mpjaodan φ F t J * k A