Metamath Proof Explorer


Theorem fsumcvg2

Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)

Ref Expression
Hypotheses fsumsers.1 φkMFk=ifkAB0
fsumsers.2 φNM
fsumsers.3 φkAB
fsumsers.4 φAMN
Assertion fsumcvg2 φseqM+FseqM+FN

Proof

Step Hyp Ref Expression
1 fsumsers.1 φkMFk=ifkAB0
2 fsumsers.2 φNM
3 fsumsers.3 φkAB
4 fsumsers.4 φAMN
5 nfcv _mifkAB0
6 nfv kmA
7 nfcsb1v _km/kB
8 nfcv _k0
9 6 7 8 nfif _kifmAm/kB0
10 eleq1w k=mkAmA
11 csbeq1a k=mB=m/kB
12 10 11 ifbieq1d k=mifkAB0=ifmAm/kB0
13 5 9 12 cbvmpt kifkAB0=mifmAm/kB0
14 3 ralrimiva φkAB
15 7 nfel1 km/kB
16 11 eleq1d k=mBm/kB
17 15 16 rspc mAkABm/kB
18 14 17 mpan9 φmAm/kB
19 13 18 2 4 fsumcvg φseqM+kifkAB0seqM+kifkAB0N
20 eluzel2 NMM
21 2 20 syl φM
22 eluzelz kMk
23 iftrue kAifkAB0=B
24 23 adantl φkAifkAB0=B
25 24 3 eqeltrd φkAifkAB0
26 25 ex φkAifkAB0
27 iffalse ¬kAifkAB0=0
28 0cn 0
29 27 28 eqeltrdi ¬kAifkAB0
30 26 29 pm2.61d1 φifkAB0
31 eqid kifkAB0=kifkAB0
32 31 fvmpt2 kifkAB0kifkAB0k=ifkAB0
33 22 30 32 syl2anr φkMkifkAB0k=ifkAB0
34 1 33 eqtr4d φkMFk=kifkAB0k
35 34 ralrimiva φkMFk=kifkAB0k
36 nffvmpt1 _kkifkAB0n
37 36 nfeq2 kFn=kifkAB0n
38 fveq2 k=nFk=Fn
39 fveq2 k=nkifkAB0k=kifkAB0n
40 38 39 eqeq12d k=nFk=kifkAB0kFn=kifkAB0n
41 37 40 rspc nMkMFk=kifkAB0kFn=kifkAB0n
42 35 41 mpan9 φnMFn=kifkAB0n
43 21 42 seqfeq φseqM+F=seqM+kifkAB0
44 43 fveq1d φseqM+FN=seqM+kifkAB0N
45 19 43 44 3brtr4d φseqM+FseqM+FN