Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumsers.1 | |
|
fsumsers.2 | |
||
fsumsers.3 | |
||
fsumsers.4 | |
||
Assertion | fsumcvg2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsers.1 | |
|
2 | fsumsers.2 | |
|
3 | fsumsers.3 | |
|
4 | fsumsers.4 | |
|
5 | nfcv | |
|
6 | nfv | |
|
7 | nfcsb1v | |
|
8 | nfcv | |
|
9 | 6 7 8 | nfif | |
10 | eleq1w | |
|
11 | csbeq1a | |
|
12 | 10 11 | ifbieq1d | |
13 | 5 9 12 | cbvmpt | |
14 | 3 | ralrimiva | |
15 | 7 | nfel1 | |
16 | 11 | eleq1d | |
17 | 15 16 | rspc | |
18 | 14 17 | mpan9 | |
19 | 13 18 2 4 | fsumcvg | |
20 | eluzel2 | |
|
21 | 2 20 | syl | |
22 | eluzelz | |
|
23 | iftrue | |
|
24 | 23 | adantl | |
25 | 24 3 | eqeltrd | |
26 | 25 | ex | |
27 | iffalse | |
|
28 | 0cn | |
|
29 | 27 28 | eqeltrdi | |
30 | 26 29 | pm2.61d1 | |
31 | eqid | |
|
32 | 31 | fvmpt2 | |
33 | 22 30 32 | syl2anr | |
34 | 1 33 | eqtr4d | |
35 | 34 | ralrimiva | |
36 | nffvmpt1 | |
|
37 | 36 | nfeq2 | |
38 | fveq2 | |
|
39 | fveq2 | |
|
40 | 38 39 | eqeq12d | |
41 | 37 40 | rspc | |
42 | 35 41 | mpan9 | |
43 | 21 42 | seqfeq | |
44 | 43 | fveq1d | |
45 | 19 43 44 | 3brtr4d | |