Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | summo.1 | |
|
summo.2 | |
||
sumrb.3 | |
||
fsumcvg.4 | |
||
Assertion | fsumcvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | summo.1 | |
|
2 | summo.2 | |
|
3 | sumrb.3 | |
|
4 | fsumcvg.4 | |
|
5 | eqid | |
|
6 | eluzelz | |
|
7 | 3 6 | syl | |
8 | seqex | |
|
9 | 8 | a1i | |
10 | eqid | |
|
11 | eluzel2 | |
|
12 | 3 11 | syl | |
13 | eluzelz | |
|
14 | iftrue | |
|
15 | 14 | adantl | |
16 | 15 2 | eqeltrd | |
17 | 16 | ex | |
18 | iffalse | |
|
19 | 0cn | |
|
20 | 18 19 | eqeltrdi | |
21 | 17 20 | pm2.61d1 | |
22 | 1 | fvmpt2 | |
23 | 13 21 22 | syl2anr | |
24 | 21 | adantr | |
25 | 23 24 | eqeltrd | |
26 | 10 12 25 | serf | |
27 | 26 3 | ffvelcdmd | |
28 | addrid | |
|
29 | 28 | adantl | |
30 | 3 | adantr | |
31 | simpr | |
|
32 | 27 | adantr | |
33 | elfzuz | |
|
34 | eluzelz | |
|
35 | 34 | adantl | |
36 | 4 | sseld | |
37 | fznuz | |
|
38 | 36 37 | syl6 | |
39 | 38 | con2d | |
40 | 39 | imp | |
41 | 35 40 | eldifd | |
42 | fveqeq2 | |
|
43 | eldifi | |
|
44 | eldifn | |
|
45 | 44 18 | syl | |
46 | 45 19 | eqeltrdi | |
47 | 43 46 22 | syl2anc | |
48 | 47 45 | eqtrd | |
49 | 42 48 | vtoclga | |
50 | 41 49 | syl | |
51 | 33 50 | sylan2 | |
52 | 51 | adantlr | |
53 | 29 30 31 32 52 | seqid2 | |
54 | 53 | eqcomd | |
55 | 5 7 9 27 54 | climconst | |