Metamath Proof Explorer


Theorem fsumcvg

Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)

Ref Expression
Hypotheses summo.1 F=kifkAB0
summo.2 φkAB
sumrb.3 φNM
fsumcvg.4 φAMN
Assertion fsumcvg φseqM+FseqM+FN

Proof

Step Hyp Ref Expression
1 summo.1 F=kifkAB0
2 summo.2 φkAB
3 sumrb.3 φNM
4 fsumcvg.4 φAMN
5 eqid N=N
6 eluzelz NMN
7 3 6 syl φN
8 seqex seqM+FV
9 8 a1i φseqM+FV
10 eqid M=M
11 eluzel2 NMM
12 3 11 syl φM
13 eluzelz kMk
14 iftrue kAifkAB0=B
15 14 adantl φkAifkAB0=B
16 15 2 eqeltrd φkAifkAB0
17 16 ex φkAifkAB0
18 iffalse ¬kAifkAB0=0
19 0cn 0
20 18 19 eqeltrdi ¬kAifkAB0
21 17 20 pm2.61d1 φifkAB0
22 1 fvmpt2 kifkAB0Fk=ifkAB0
23 13 21 22 syl2anr φkMFk=ifkAB0
24 21 adantr φkMifkAB0
25 23 24 eqeltrd φkMFk
26 10 12 25 serf φseqM+F:M
27 26 3 ffvelcdmd φseqM+FN
28 addrid mm+0=m
29 28 adantl φnNmm+0=m
30 3 adantr φnNNM
31 simpr φnNnN
32 27 adantr φnNseqM+FN
33 elfzuz mN+1nmN+1
34 eluzelz mN+1m
35 34 adantl φmN+1m
36 4 sseld φmAmMN
37 fznuz mMN¬mN+1
38 36 37 syl6 φmA¬mN+1
39 38 con2d φmN+1¬mA
40 39 imp φmN+1¬mA
41 35 40 eldifd φmN+1mA
42 fveqeq2 k=mFk=0Fm=0
43 eldifi kAk
44 eldifn kA¬kA
45 44 18 syl kAifkAB0=0
46 45 19 eqeltrdi kAifkAB0
47 43 46 22 syl2anc kAFk=ifkAB0
48 47 45 eqtrd kAFk=0
49 42 48 vtoclga mAFm=0
50 41 49 syl φmN+1Fm=0
51 33 50 sylan2 φmN+1nFm=0
52 51 adantlr φnNmN+1nFm=0
53 29 30 31 32 52 seqid2 φnNseqM+FN=seqM+Fn
54 53 eqcomd φnNseqM+Fn=seqM+FN
55 5 7 9 27 54 climconst φseqM+FseqM+FN