| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcvgsum.1 |
|- ( k = i -> A = B ) |
| 2 |
|
esumcvgsum.2 |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,) +oo ) ) |
| 3 |
|
esumcvgsum.3 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = A ) |
| 4 |
|
esumcvgsum.4 |
|- ( ph -> seq 1 ( + , F ) ~~> L ) |
| 5 |
|
esumcvgsum.5 |
|- ( ph -> L e. RR ) |
| 6 |
|
simpll |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... j ) ) -> ph ) |
| 7 |
|
elfznn |
|- ( k e. ( 1 ... j ) -> k e. NN ) |
| 8 |
7
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... j ) ) -> k e. NN ) |
| 9 |
6 8 3
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... j ) ) -> ( F ` k ) = A ) |
| 10 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 11 |
10
|
eleq2i |
|- ( j e. NN <-> j e. ( ZZ>= ` 1 ) ) |
| 12 |
11
|
biimpi |
|- ( j e. NN -> j e. ( ZZ>= ` 1 ) ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
| 14 |
|
mnfxr |
|- -oo e. RR* |
| 15 |
|
pnfxr |
|- +oo e. RR* |
| 16 |
|
0re |
|- 0 e. RR |
| 17 |
|
mnflt |
|- ( 0 e. RR -> -oo < 0 ) |
| 18 |
16 17
|
ax-mp |
|- -oo < 0 |
| 19 |
|
pnfge |
|- ( +oo e. RR* -> +oo <_ +oo ) |
| 20 |
15 19
|
ax-mp |
|- +oo <_ +oo |
| 21 |
|
icossioo |
|- ( ( ( -oo e. RR* /\ +oo e. RR* ) /\ ( -oo < 0 /\ +oo <_ +oo ) ) -> ( 0 [,) +oo ) C_ ( -oo (,) +oo ) ) |
| 22 |
14 15 18 20 21
|
mp4an |
|- ( 0 [,) +oo ) C_ ( -oo (,) +oo ) |
| 23 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
| 24 |
22 23
|
sseqtri |
|- ( 0 [,) +oo ) C_ RR |
| 25 |
6 8 2
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... j ) ) -> A e. ( 0 [,) +oo ) ) |
| 26 |
24 25
|
sselid |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... j ) ) -> A e. RR ) |
| 27 |
26
|
recnd |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... j ) ) -> A e. CC ) |
| 28 |
9 13 27
|
fsumser |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... j ) A = ( seq 1 ( + , F ) ` j ) ) |
| 29 |
28
|
mpteq2dva |
|- ( ph -> ( j e. NN |-> sum_ k e. ( 1 ... j ) A ) = ( j e. NN |-> ( seq 1 ( + , F ) ` j ) ) ) |
| 30 |
|
1z |
|- 1 e. ZZ |
| 31 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , F ) Fn ( ZZ>= ` 1 ) ) |
| 32 |
30 31
|
ax-mp |
|- seq 1 ( + , F ) Fn ( ZZ>= ` 1 ) |
| 33 |
|
fneq2 |
|- ( NN = ( ZZ>= ` 1 ) -> ( seq 1 ( + , F ) Fn NN <-> seq 1 ( + , F ) Fn ( ZZ>= ` 1 ) ) ) |
| 34 |
10 33
|
ax-mp |
|- ( seq 1 ( + , F ) Fn NN <-> seq 1 ( + , F ) Fn ( ZZ>= ` 1 ) ) |
| 35 |
32 34
|
mpbir |
|- seq 1 ( + , F ) Fn NN |
| 36 |
|
dffn5 |
|- ( seq 1 ( + , F ) Fn NN <-> seq 1 ( + , F ) = ( j e. NN |-> ( seq 1 ( + , F ) ` j ) ) ) |
| 37 |
35 36
|
mpbi |
|- seq 1 ( + , F ) = ( j e. NN |-> ( seq 1 ( + , F ) ` j ) ) |
| 38 |
|
seqex |
|- seq 1 ( + , F ) e. _V |
| 39 |
38
|
a1i |
|- ( ph -> seq 1 ( + , F ) e. _V ) |
| 40 |
|
breldmg |
|- ( ( seq 1 ( + , F ) e. _V /\ L e. RR /\ seq 1 ( + , F ) ~~> L ) -> seq 1 ( + , F ) e. dom ~~> ) |
| 41 |
39 5 4 40
|
syl3anc |
|- ( ph -> seq 1 ( + , F ) e. dom ~~> ) |
| 42 |
37 41
|
eqeltrrid |
|- ( ph -> ( j e. NN |-> ( seq 1 ( + , F ) ` j ) ) e. dom ~~> ) |
| 43 |
29 42
|
eqeltrd |
|- ( ph -> ( j e. NN |-> sum_ k e. ( 1 ... j ) A ) e. dom ~~> ) |
| 44 |
2 1 43
|
esumpcvgval |
|- ( ph -> sum* k e. NN A = sum_ k e. NN A ) |