Step |
Hyp |
Ref |
Expression |
1 |
|
esumcvgsum.1 |
⊢ ( 𝑘 = 𝑖 → 𝐴 = 𝐵 ) |
2 |
|
esumcvgsum.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
3 |
|
esumcvgsum.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
4 |
|
esumcvgsum.4 |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝐿 ) |
5 |
|
esumcvgsum.5 |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
6 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑗 ) ) → 𝜑 ) |
7 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑗 ) → 𝑘 ∈ ℕ ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑗 ) ) → 𝑘 ∈ ℕ ) |
9 |
6 8 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
10 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
11 |
10
|
eleq2i |
⊢ ( 𝑗 ∈ ℕ ↔ 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
12 |
11
|
biimpi |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
14 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
15 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
mnflt |
⊢ ( 0 ∈ ℝ → -∞ < 0 ) |
18 |
16 17
|
ax-mp |
⊢ -∞ < 0 |
19 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
20 |
15 19
|
ax-mp |
⊢ +∞ ≤ +∞ |
21 |
|
icossioo |
⊢ ( ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 0 ∧ +∞ ≤ +∞ ) ) → ( 0 [,) +∞ ) ⊆ ( -∞ (,) +∞ ) ) |
22 |
14 15 18 20 21
|
mp4an |
⊢ ( 0 [,) +∞ ) ⊆ ( -∞ (,) +∞ ) |
23 |
|
ioomax |
⊢ ( -∞ (,) +∞ ) = ℝ |
24 |
22 23
|
sseqtri |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
25 |
6 8 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑗 ) ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
26 |
24 25
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑗 ) ) → 𝐴 ∈ ℝ ) |
27 |
26
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑗 ) ) → 𝐴 ∈ ℂ ) |
28 |
9 13 27
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 𝐴 = ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) |
29 |
28
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑗 ) 𝐴 ) = ( 𝑗 ∈ ℕ ↦ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
30 |
|
1z |
⊢ 1 ∈ ℤ |
31 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) ) |
32 |
30 31
|
ax-mp |
⊢ seq 1 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) |
33 |
|
fneq2 |
⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐹 ) Fn ℕ ↔ seq 1 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) ) ) |
34 |
10 33
|
ax-mp |
⊢ ( seq 1 ( + , 𝐹 ) Fn ℕ ↔ seq 1 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 1 ) ) |
35 |
32 34
|
mpbir |
⊢ seq 1 ( + , 𝐹 ) Fn ℕ |
36 |
|
dffn5 |
⊢ ( seq 1 ( + , 𝐹 ) Fn ℕ ↔ seq 1 ( + , 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
37 |
35 36
|
mpbi |
⊢ seq 1 ( + , 𝐹 ) = ( 𝑗 ∈ ℕ ↦ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) |
38 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
39 |
38
|
a1i |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ V ) |
40 |
|
breldmg |
⊢ ( ( seq 1 ( + , 𝐹 ) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq 1 ( + , 𝐹 ) ⇝ 𝐿 ) → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
41 |
39 5 4 40
|
syl3anc |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
42 |
37 41
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) ∈ dom ⇝ ) |
43 |
29 42
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ Σ 𝑘 ∈ ( 1 ... 𝑗 ) 𝐴 ) ∈ dom ⇝ ) |
44 |
2 1 43
|
esumpcvgval |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 ) |