| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcvgsum.1 |
|
| 2 |
|
esumcvgsum.2 |
|
| 3 |
|
esumcvgsum.3 |
|
| 4 |
|
esumcvgsum.4 |
|
| 5 |
|
esumcvgsum.5 |
|
| 6 |
|
simpll |
|
| 7 |
|
elfznn |
|
| 8 |
7
|
adantl |
|
| 9 |
6 8 3
|
syl2anc |
|
| 10 |
|
nnuz |
|
| 11 |
10
|
eleq2i |
|
| 12 |
11
|
biimpi |
|
| 13 |
12
|
adantl |
|
| 14 |
|
mnfxr |
|
| 15 |
|
pnfxr |
|
| 16 |
|
0re |
|
| 17 |
|
mnflt |
|
| 18 |
16 17
|
ax-mp |
|
| 19 |
|
pnfge |
|
| 20 |
15 19
|
ax-mp |
|
| 21 |
|
icossioo |
|
| 22 |
14 15 18 20 21
|
mp4an |
|
| 23 |
|
ioomax |
|
| 24 |
22 23
|
sseqtri |
|
| 25 |
6 8 2
|
syl2anc |
|
| 26 |
24 25
|
sselid |
|
| 27 |
26
|
recnd |
|
| 28 |
9 13 27
|
fsumser |
|
| 29 |
28
|
mpteq2dva |
|
| 30 |
|
1z |
|
| 31 |
|
seqfn |
|
| 32 |
30 31
|
ax-mp |
|
| 33 |
|
fneq2 |
|
| 34 |
10 33
|
ax-mp |
|
| 35 |
32 34
|
mpbir |
|
| 36 |
|
dffn5 |
|
| 37 |
35 36
|
mpbi |
|
| 38 |
|
seqex |
|
| 39 |
38
|
a1i |
|
| 40 |
|
breldmg |
|
| 41 |
39 5 4 40
|
syl3anc |
|
| 42 |
37 41
|
eqeltrrid |
|
| 43 |
29 42
|
eqeltrd |
|
| 44 |
2 1 43
|
esumpcvgval |
|