Step |
Hyp |
Ref |
Expression |
1 |
|
esumcvgsum.1 |
|
2 |
|
esumcvgsum.2 |
|
3 |
|
esumcvgsum.3 |
|
4 |
|
esumcvgsum.4 |
|
5 |
|
esumcvgsum.5 |
|
6 |
|
simpll |
|
7 |
|
elfznn |
|
8 |
7
|
adantl |
|
9 |
6 8 3
|
syl2anc |
|
10 |
|
nnuz |
|
11 |
10
|
eleq2i |
|
12 |
11
|
biimpi |
|
13 |
12
|
adantl |
|
14 |
|
mnfxr |
|
15 |
|
pnfxr |
|
16 |
|
0re |
|
17 |
|
mnflt |
|
18 |
16 17
|
ax-mp |
|
19 |
|
pnfge |
|
20 |
15 19
|
ax-mp |
|
21 |
|
icossioo |
|
22 |
14 15 18 20 21
|
mp4an |
|
23 |
|
ioomax |
|
24 |
22 23
|
sseqtri |
|
25 |
6 8 2
|
syl2anc |
|
26 |
24 25
|
sselid |
|
27 |
26
|
recnd |
|
28 |
9 13 27
|
fsumser |
|
29 |
28
|
mpteq2dva |
|
30 |
|
1z |
|
31 |
|
seqfn |
|
32 |
30 31
|
ax-mp |
|
33 |
|
fneq2 |
|
34 |
10 33
|
ax-mp |
|
35 |
32 34
|
mpbir |
|
36 |
|
dffn5 |
|
37 |
35 36
|
mpbi |
|
38 |
|
seqex |
|
39 |
38
|
a1i |
|
40 |
|
breldmg |
|
41 |
39 5 4 40
|
syl3anc |
|
42 |
37 41
|
eqeltrrid |
|
43 |
29 42
|
eqeltrd |
|
44 |
2 1 43
|
esumpcvgval |
|