Metamath Proof Explorer


Theorem esumcvgsum

Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019)

Ref Expression
Hypotheses esumcvgsum.1 k = i A = B
esumcvgsum.2 φ k A 0 +∞
esumcvgsum.3 φ k F k = A
esumcvgsum.4 φ seq 1 + F L
esumcvgsum.5 φ L
Assertion esumcvgsum φ * k A = k A

Proof

Step Hyp Ref Expression
1 esumcvgsum.1 k = i A = B
2 esumcvgsum.2 φ k A 0 +∞
3 esumcvgsum.3 φ k F k = A
4 esumcvgsum.4 φ seq 1 + F L
5 esumcvgsum.5 φ L
6 simpll φ j k 1 j φ
7 elfznn k 1 j k
8 7 adantl φ j k 1 j k
9 6 8 3 syl2anc φ j k 1 j F k = A
10 nnuz = 1
11 10 eleq2i j j 1
12 11 biimpi j j 1
13 12 adantl φ j j 1
14 mnfxr −∞ *
15 pnfxr +∞ *
16 0re 0
17 mnflt 0 −∞ < 0
18 16 17 ax-mp −∞ < 0
19 pnfge +∞ * +∞ +∞
20 15 19 ax-mp +∞ +∞
21 icossioo −∞ * +∞ * −∞ < 0 +∞ +∞ 0 +∞ −∞ +∞
22 14 15 18 20 21 mp4an 0 +∞ −∞ +∞
23 ioomax −∞ +∞ =
24 22 23 sseqtri 0 +∞
25 6 8 2 syl2anc φ j k 1 j A 0 +∞
26 24 25 sselid φ j k 1 j A
27 26 recnd φ j k 1 j A
28 9 13 27 fsumser φ j k = 1 j A = seq 1 + F j
29 28 mpteq2dva φ j k = 1 j A = j seq 1 + F j
30 1z 1
31 seqfn 1 seq 1 + F Fn 1
32 30 31 ax-mp seq 1 + F Fn 1
33 fneq2 = 1 seq 1 + F Fn seq 1 + F Fn 1
34 10 33 ax-mp seq 1 + F Fn seq 1 + F Fn 1
35 32 34 mpbir seq 1 + F Fn
36 dffn5 seq 1 + F Fn seq 1 + F = j seq 1 + F j
37 35 36 mpbi seq 1 + F = j seq 1 + F j
38 seqex seq 1 + F V
39 38 a1i φ seq 1 + F V
40 breldmg seq 1 + F V L seq 1 + F L seq 1 + F dom
41 39 5 4 40 syl3anc φ seq 1 + F dom
42 37 41 eqeltrrid φ j seq 1 + F j dom
43 29 42 eqeltrd φ j k = 1 j A dom
44 2 1 43 esumpcvgval φ * k A = k A