Metamath Proof Explorer


Theorem esumsup

Description: Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses esumsup.1 φ B 0 +∞
esumsup.2 φ k A 0 +∞
Assertion esumsup φ * k A = sup ran n * k = 1 n A * <

Proof

Step Hyp Ref Expression
1 esumsup.1 φ B 0 +∞
2 esumsup.2 φ k A 0 +∞
3 2 fmpttd φ k A : 0 +∞
4 nfmpt1 _ k k A
5 4 esumfsup k A : 0 +∞ * k k A k = sup ran seq 1 + 𝑒 k A * <
6 3 5 syl φ * k k A k = sup ran seq 1 + 𝑒 k A * <
7 simpr φ k k
8 eqid k A = k A
9 8 fvmpt2 k A 0 +∞ k A k = A
10 7 2 9 syl2anc φ k k A k = A
11 10 esumeq2dv φ * k k A k = * k A
12 1z 1
13 seqfn 1 seq 1 + 𝑒 k A Fn 1
14 12 13 ax-mp seq 1 + 𝑒 k A Fn 1
15 nnuz = 1
16 15 fneq2i seq 1 + 𝑒 k A Fn seq 1 + 𝑒 k A Fn 1
17 14 16 mpbir seq 1 + 𝑒 k A Fn
18 nfcv _ n seq 1 + 𝑒 k A
19 18 dffn5f seq 1 + 𝑒 k A Fn seq 1 + 𝑒 k A = n seq 1 + 𝑒 k A n
20 17 19 mpbi seq 1 + 𝑒 k A = n seq 1 + 𝑒 k A n
21 20 a1i φ seq 1 + 𝑒 k A = n seq 1 + 𝑒 k A n
22 fz1ssnn 1 n
23 22 a1i φ n 1 n
24 23 sselda φ n k 1 n k
25 simpll φ n k 1 n φ
26 25 24 2 syl2anc φ n k 1 n A 0 +∞
27 24 26 9 syl2anc φ n k 1 n k A k = A
28 27 esumeq2dv φ n * k = 1 n k A k = * k = 1 n A
29 4 esumfzf k A : 0 +∞ n * k = 1 n k A k = seq 1 + 𝑒 k A n
30 3 29 sylan φ n * k = 1 n k A k = seq 1 + 𝑒 k A n
31 28 30 eqtr3d φ n * k = 1 n A = seq 1 + 𝑒 k A n
32 31 mpteq2dva φ n * k = 1 n A = n seq 1 + 𝑒 k A n
33 21 32 eqtr4d φ seq 1 + 𝑒 k A = n * k = 1 n A
34 33 rneqd φ ran seq 1 + 𝑒 k A = ran n * k = 1 n A
35 34 supeq1d φ sup ran seq 1 + 𝑒 k A * < = sup ran n * k = 1 n A * <
36 6 11 35 3eqtr3d φ * k A = sup ran n * k = 1 n A * <