Metamath Proof Explorer


Theorem esumsup

Description: Express an extended sum as a supremum of extended sums. (Contributed by Thierry Arnoux, 24-May-2020)

Ref Expression
Hypotheses esumsup.1 ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
esumsup.2 ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) )
Assertion esumsup ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 esumsup.1 ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
2 esumsup.2 ( ( 𝜑𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) )
3 2 fmpttd ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ( 0 [,] +∞ ) )
4 nfmpt1 𝑘 ( 𝑘 ∈ ℕ ↦ 𝐴 )
5 4 esumfsup ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = sup ( ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) , ℝ* , < ) )
6 3 5 syl ( 𝜑 → Σ* 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = sup ( ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) , ℝ* , < ) )
7 simpr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
8 eqid ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ( 𝑘 ∈ ℕ ↦ 𝐴 )
9 8 fvmpt2 ( ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 )
10 7 2 9 syl2anc ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 )
11 10 esumeq2dv ( 𝜑 → Σ* 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = Σ* 𝑘 ∈ ℕ 𝐴 )
12 1z 1 ∈ ℤ
13 seqfn ( 1 ∈ ℤ → seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ( ℤ ‘ 1 ) )
14 12 13 ax-mp seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ( ℤ ‘ 1 )
15 nnuz ℕ = ( ℤ ‘ 1 )
16 15 fneq2i ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ℕ ↔ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ( ℤ ‘ 1 ) )
17 14 16 mpbir seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ℕ
18 nfcv 𝑛 seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) )
19 18 dffn5f ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ℕ ↔ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) )
20 17 19 mpbi seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) )
21 20 a1i ( 𝜑 → seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) )
22 fz1ssnn ( 1 ... 𝑛 ) ⊆ ℕ
23 22 a1i ( ( 𝜑𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ )
24 23 sselda ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ )
25 simpll ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 )
26 25 24 2 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) )
27 24 26 9 syl2anc ( ( ( 𝜑𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 )
28 27 esumeq2dv ( ( 𝜑𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 )
29 4 esumfzf ( ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) )
30 3 29 sylan ( ( 𝜑𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) )
31 28 30 eqtr3d ( ( 𝜑𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) )
32 31 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) )
33 21 32 eqtr4d ( 𝜑 → seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
34 33 rneqd ( 𝜑 → ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) )
35 34 supeq1d ( 𝜑 → sup ( ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) )
36 6 11 35 3eqtr3d ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) )