Step |
Hyp |
Ref |
Expression |
1 |
|
esumsup.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
2 |
|
esumsup.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
3 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
4 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ ℕ ↦ 𝐴 ) |
5 |
4
|
esumfsup |
⊢ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = sup ( ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) , ℝ* , < ) ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = sup ( ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) , ℝ* , < ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
8 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ 𝐴 ) = ( 𝑘 ∈ ℕ ↦ 𝐴 ) |
9 |
8
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝐴 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 ) |
10 |
7 2 9
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 ) |
11 |
10
|
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = Σ* 𝑘 ∈ ℕ 𝐴 ) |
12 |
|
1z |
⊢ 1 ∈ ℤ |
13 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
14 |
12 13
|
ax-mp |
⊢ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ( ℤ≥ ‘ 1 ) |
15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
16 |
15
|
fneq2i |
⊢ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ℕ ↔ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
17 |
14 16
|
mpbir |
⊢ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ℕ |
18 |
|
nfcv |
⊢ Ⅎ 𝑛 seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) |
19 |
18
|
dffn5f |
⊢ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) Fn ℕ ↔ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) ) |
20 |
17 19
|
mpbi |
⊢ seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) ) |
22 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ ) |
24 |
23
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
25 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
26 |
25 24 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
27 |
24 26 9
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = 𝐴 ) |
28 |
27
|
esumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
29 |
4
|
esumfzf |
⊢ ( ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ ( 0 [,] +∞ ) ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) |
30 |
3 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( ( 𝑘 ∈ ℕ ↦ 𝐴 ) ‘ 𝑘 ) = ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) |
31 |
28 30
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 = ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) |
32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) ‘ 𝑛 ) ) ) |
33 |
21 32
|
eqtr4d |
⊢ ( 𝜑 → seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
34 |
33
|
rneqd |
⊢ ( 𝜑 → ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) = ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
35 |
34
|
supeq1d |
⊢ ( 𝜑 → sup ( ran seq 1 ( +𝑒 , ( 𝑘 ∈ ℕ ↦ 𝐴 ) ) , ℝ* , < ) = sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) ) |
36 |
6 11 35
|
3eqtr3d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) ) |