| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumsup.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 2 |
|
esumsup.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 3 |
|
esumgect.1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ≤ 𝐵 ) |
| 4 |
1 2
|
esumsup |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 = sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑧 |
| 7 |
|
nfmpt1 |
⊢ Ⅎ 𝑛 ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 8 |
7
|
nfrn |
⊢ Ⅎ 𝑛 ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 9 |
6 8
|
nfel |
⊢ Ⅎ 𝑛 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 10 |
5 9
|
nfan |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) |
| 11 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 12 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → 𝜑 ) |
| 13 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → 𝑛 ∈ ℕ ) |
| 14 |
12 13 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ≤ 𝐵 ) |
| 15 |
11 14
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → 𝑧 ≤ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) = ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 17 |
|
esumex |
⊢ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ V |
| 18 |
16 17
|
elrnmpti |
⊢ ( 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ↔ ∃ 𝑛 ∈ ℕ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 19 |
18
|
biimpi |
⊢ ( 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) → ∃ 𝑛 ∈ ℕ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝑧 = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) |
| 21 |
10 15 20
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ) → 𝑧 ≤ 𝐵 ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) 𝑧 ≤ 𝐵 ) |
| 23 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ V ) |
| 24 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝜑 ) |
| 25 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
| 26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ ℕ ) |
| 27 |
26
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 28 |
24 27 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... 𝑛 ) |
| 31 |
30
|
esumcl |
⊢ ( ( ( 1 ... 𝑛 ) ∈ V ∧ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 32 |
23 29 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 34 |
16
|
rnmptss |
⊢ ( ∀ 𝑛 ∈ ℕ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ∈ ( 0 [,] +∞ ) → ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ⊆ ( 0 [,] +∞ ) ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ⊆ ( 0 [,] +∞ ) ) |
| 36 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 37 |
35 36
|
sstrdi |
⊢ ( 𝜑 → ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ⊆ ℝ* ) |
| 38 |
36 1
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 39 |
|
supxrleub |
⊢ ( ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) ⊆ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) 𝑧 ≤ 𝐵 ) ) |
| 40 |
37 38 39
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) 𝑧 ≤ 𝐵 ) ) |
| 41 |
22 40
|
mpbird |
⊢ ( 𝜑 → sup ( ran ( 𝑛 ∈ ℕ ↦ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) 𝐴 ) , ℝ* , < ) ≤ 𝐵 ) |
| 42 |
4 41
|
eqbrtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ℕ 𝐴 ≤ 𝐵 ) |