| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumsup.1 |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
| 2 |
|
esumsup.2 |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
| 3 |
|
esumgect.1 |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) A <_ B ) |
| 4 |
1 2
|
esumsup |
|- ( ph -> sum* k e. NN A = sup ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) , RR* , < ) ) |
| 5 |
|
nfv |
|- F/ n ph |
| 6 |
|
nfcv |
|- F/_ n z |
| 7 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
| 8 |
7
|
nfrn |
|- F/_ n ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
| 9 |
6 8
|
nfel |
|- F/ n z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
| 10 |
5 9
|
nfan |
|- F/ n ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) |
| 11 |
|
simpr |
|- ( ( ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) /\ n e. NN ) /\ z = sum* k e. ( 1 ... n ) A ) -> z = sum* k e. ( 1 ... n ) A ) |
| 12 |
|
simplll |
|- ( ( ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) /\ n e. NN ) /\ z = sum* k e. ( 1 ... n ) A ) -> ph ) |
| 13 |
|
simplr |
|- ( ( ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) /\ n e. NN ) /\ z = sum* k e. ( 1 ... n ) A ) -> n e. NN ) |
| 14 |
12 13 3
|
syl2anc |
|- ( ( ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) /\ n e. NN ) /\ z = sum* k e. ( 1 ... n ) A ) -> sum* k e. ( 1 ... n ) A <_ B ) |
| 15 |
11 14
|
eqbrtrd |
|- ( ( ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) /\ n e. NN ) /\ z = sum* k e. ( 1 ... n ) A ) -> z <_ B ) |
| 16 |
|
eqid |
|- ( n e. NN |-> sum* k e. ( 1 ... n ) A ) = ( n e. NN |-> sum* k e. ( 1 ... n ) A ) |
| 17 |
|
esumex |
|- sum* k e. ( 1 ... n ) A e. _V |
| 18 |
16 17
|
elrnmpti |
|- ( z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) <-> E. n e. NN z = sum* k e. ( 1 ... n ) A ) |
| 19 |
18
|
biimpi |
|- ( z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) -> E. n e. NN z = sum* k e. ( 1 ... n ) A ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) -> E. n e. NN z = sum* k e. ( 1 ... n ) A ) |
| 21 |
10 15 20
|
r19.29af |
|- ( ( ph /\ z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) -> z <_ B ) |
| 22 |
21
|
ralrimiva |
|- ( ph -> A. z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) z <_ B ) |
| 23 |
|
ovexd |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. _V ) |
| 24 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
| 25 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
| 26 |
25
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) C_ NN ) |
| 27 |
26
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 28 |
24 27 2
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( 0 [,] +oo ) ) |
| 29 |
28
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 30 |
|
nfcv |
|- F/_ k ( 1 ... n ) |
| 31 |
30
|
esumcl |
|- ( ( ( 1 ... n ) e. _V /\ A. k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 32 |
23 29 31
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 33 |
32
|
ralrimiva |
|- ( ph -> A. n e. NN sum* k e. ( 1 ... n ) A e. ( 0 [,] +oo ) ) |
| 34 |
16
|
rnmptss |
|- ( A. n e. NN sum* k e. ( 1 ... n ) A e. ( 0 [,] +oo ) -> ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) C_ ( 0 [,] +oo ) ) |
| 35 |
33 34
|
syl |
|- ( ph -> ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) C_ ( 0 [,] +oo ) ) |
| 36 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 37 |
35 36
|
sstrdi |
|- ( ph -> ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) C_ RR* ) |
| 38 |
36 1
|
sselid |
|- ( ph -> B e. RR* ) |
| 39 |
|
supxrleub |
|- ( ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) C_ RR* /\ B e. RR* ) -> ( sup ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) , RR* , < ) <_ B <-> A. z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) z <_ B ) ) |
| 40 |
37 38 39
|
syl2anc |
|- ( ph -> ( sup ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) , RR* , < ) <_ B <-> A. z e. ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) z <_ B ) ) |
| 41 |
22 40
|
mpbird |
|- ( ph -> sup ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) , RR* , < ) <_ B ) |
| 42 |
4 41
|
eqbrtrd |
|- ( ph -> sum* k e. NN A <_ B ) |