| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcvgre.0 |
|- F/ k ph |
| 2 |
|
esumcvgre.1 |
|- ( ph -> A e. V ) |
| 3 |
|
esumcvgre.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 4 |
|
esumcvgre.3 |
|- ( ph -> sum* k e. A B e. RR ) |
| 5 |
|
nfre1 |
|- F/ k E. k e. A B = +oo |
| 6 |
1 5
|
nfan |
|- F/ k ( ph /\ E. k e. A B = +oo ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ E. k e. A B = +oo ) -> A e. V ) |
| 8 |
3
|
adantlr |
|- ( ( ( ph /\ E. k e. A B = +oo ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ E. k e. A B = +oo ) -> E. k e. A B = +oo ) |
| 10 |
6 7 8 9
|
esumpinfval |
|- ( ( ph /\ E. k e. A B = +oo ) -> sum* k e. A B = +oo ) |
| 11 |
|
ltpnf |
|- ( sum* k e. A B e. RR -> sum* k e. A B < +oo ) |
| 12 |
4 11
|
syl |
|- ( ph -> sum* k e. A B < +oo ) |
| 13 |
4 12
|
gtned |
|- ( ph -> +oo =/= sum* k e. A B ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ E. k e. A B = +oo ) -> +oo =/= sum* k e. A B ) |
| 15 |
|
necom |
|- ( +oo =/= sum* k e. A B <-> sum* k e. A B =/= +oo ) |
| 16 |
15
|
imbi2i |
|- ( ( ( ph /\ E. k e. A B = +oo ) -> +oo =/= sum* k e. A B ) <-> ( ( ph /\ E. k e. A B = +oo ) -> sum* k e. A B =/= +oo ) ) |
| 17 |
14 16
|
mpbi |
|- ( ( ph /\ E. k e. A B = +oo ) -> sum* k e. A B =/= +oo ) |
| 18 |
17
|
neneqd |
|- ( ( ph /\ E. k e. A B = +oo ) -> -. sum* k e. A B = +oo ) |
| 19 |
10 18
|
pm2.65da |
|- ( ph -> -. E. k e. A B = +oo ) |
| 20 |
|
ralnex |
|- ( A. k e. A -. B = +oo <-> -. E. k e. A B = +oo ) |
| 21 |
19 20
|
sylibr |
|- ( ph -> A. k e. A -. B = +oo ) |
| 22 |
21
|
r19.21bi |
|- ( ( ph /\ k e. A ) -> -. B = +oo ) |
| 23 |
|
eliccxr |
|- ( B e. ( 0 [,] +oo ) -> B e. RR* ) |
| 24 |
|
xrge0neqmnf |
|- ( B e. ( 0 [,] +oo ) -> B =/= -oo ) |
| 25 |
|
xrnemnf |
|- ( ( B e. RR* /\ B =/= -oo ) <-> ( B e. RR \/ B = +oo ) ) |
| 26 |
25
|
biimpi |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B e. RR \/ B = +oo ) ) |
| 27 |
23 24 26
|
syl2anc |
|- ( B e. ( 0 [,] +oo ) -> ( B e. RR \/ B = +oo ) ) |
| 28 |
3 27
|
syl |
|- ( ( ph /\ k e. A ) -> ( B e. RR \/ B = +oo ) ) |
| 29 |
28
|
orcomd |
|- ( ( ph /\ k e. A ) -> ( B = +oo \/ B e. RR ) ) |
| 30 |
29
|
orcanai |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> B e. RR ) |
| 31 |
22 30
|
mpdan |
|- ( ( ph /\ k e. A ) -> B e. RR ) |