Step |
Hyp |
Ref |
Expression |
1 |
|
esumcvgre.0 |
|- F/ k ph |
2 |
|
esumcvgre.1 |
|- ( ph -> A e. V ) |
3 |
|
esumcvgre.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
4 |
|
esumcvgre.3 |
|- ( ph -> sum* k e. A B e. RR ) |
5 |
|
nfre1 |
|- F/ k E. k e. A B = +oo |
6 |
1 5
|
nfan |
|- F/ k ( ph /\ E. k e. A B = +oo ) |
7 |
2
|
adantr |
|- ( ( ph /\ E. k e. A B = +oo ) -> A e. V ) |
8 |
3
|
adantlr |
|- ( ( ( ph /\ E. k e. A B = +oo ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
9 |
|
simpr |
|- ( ( ph /\ E. k e. A B = +oo ) -> E. k e. A B = +oo ) |
10 |
6 7 8 9
|
esumpinfval |
|- ( ( ph /\ E. k e. A B = +oo ) -> sum* k e. A B = +oo ) |
11 |
|
ltpnf |
|- ( sum* k e. A B e. RR -> sum* k e. A B < +oo ) |
12 |
4 11
|
syl |
|- ( ph -> sum* k e. A B < +oo ) |
13 |
4 12
|
gtned |
|- ( ph -> +oo =/= sum* k e. A B ) |
14 |
13
|
adantr |
|- ( ( ph /\ E. k e. A B = +oo ) -> +oo =/= sum* k e. A B ) |
15 |
|
necom |
|- ( +oo =/= sum* k e. A B <-> sum* k e. A B =/= +oo ) |
16 |
15
|
imbi2i |
|- ( ( ( ph /\ E. k e. A B = +oo ) -> +oo =/= sum* k e. A B ) <-> ( ( ph /\ E. k e. A B = +oo ) -> sum* k e. A B =/= +oo ) ) |
17 |
14 16
|
mpbi |
|- ( ( ph /\ E. k e. A B = +oo ) -> sum* k e. A B =/= +oo ) |
18 |
17
|
neneqd |
|- ( ( ph /\ E. k e. A B = +oo ) -> -. sum* k e. A B = +oo ) |
19 |
10 18
|
pm2.65da |
|- ( ph -> -. E. k e. A B = +oo ) |
20 |
|
ralnex |
|- ( A. k e. A -. B = +oo <-> -. E. k e. A B = +oo ) |
21 |
19 20
|
sylibr |
|- ( ph -> A. k e. A -. B = +oo ) |
22 |
21
|
r19.21bi |
|- ( ( ph /\ k e. A ) -> -. B = +oo ) |
23 |
|
eliccxr |
|- ( B e. ( 0 [,] +oo ) -> B e. RR* ) |
24 |
|
xrge0neqmnf |
|- ( B e. ( 0 [,] +oo ) -> B =/= -oo ) |
25 |
|
xrnemnf |
|- ( ( B e. RR* /\ B =/= -oo ) <-> ( B e. RR \/ B = +oo ) ) |
26 |
25
|
biimpi |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B e. RR \/ B = +oo ) ) |
27 |
23 24 26
|
syl2anc |
|- ( B e. ( 0 [,] +oo ) -> ( B e. RR \/ B = +oo ) ) |
28 |
3 27
|
syl |
|- ( ( ph /\ k e. A ) -> ( B e. RR \/ B = +oo ) ) |
29 |
28
|
orcomd |
|- ( ( ph /\ k e. A ) -> ( B = +oo \/ B e. RR ) ) |
30 |
29
|
orcanai |
|- ( ( ( ph /\ k e. A ) /\ -. B = +oo ) -> B e. RR ) |
31 |
22 30
|
mpdan |
|- ( ( ph /\ k e. A ) -> B e. RR ) |