Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumcvgre.0 | |
|
esumcvgre.1 | |
||
esumcvgre.2 | |
||
esumcvgre.3 | |
||
Assertion | esumcvgre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumcvgre.0 | |
|
2 | esumcvgre.1 | |
|
3 | esumcvgre.2 | |
|
4 | esumcvgre.3 | |
|
5 | nfre1 | |
|
6 | 1 5 | nfan | |
7 | 2 | adantr | |
8 | 3 | adantlr | |
9 | simpr | |
|
10 | 6 7 8 9 | esumpinfval | |
11 | ltpnf | |
|
12 | 4 11 | syl | |
13 | 4 12 | gtned | |
14 | 13 | adantr | |
15 | necom | |
|
16 | 15 | imbi2i | |
17 | 14 16 | mpbi | |
18 | 17 | neneqd | |
19 | 10 18 | pm2.65da | |
20 | ralnex | |
|
21 | 19 20 | sylibr | |
22 | 21 | r19.21bi | |
23 | eliccxr | |
|
24 | xrge0neqmnf | |
|
25 | xrnemnf | |
|
26 | 25 | biimpi | |
27 | 23 24 26 | syl2anc | |
28 | 3 27 | syl | |
29 | 28 | orcomd | |
30 | 29 | orcanai | |
31 | 22 30 | mpdan | |