Metamath Proof Explorer


Theorem esumcvgre

Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019)

Ref Expression
Hypotheses esumcvgre.0 kφ
esumcvgre.1 φAV
esumcvgre.2 φkAB0+∞
esumcvgre.3 φ*kAB
Assertion esumcvgre φkAB

Proof

Step Hyp Ref Expression
1 esumcvgre.0 kφ
2 esumcvgre.1 φAV
3 esumcvgre.2 φkAB0+∞
4 esumcvgre.3 φ*kAB
5 nfre1 kkAB=+∞
6 1 5 nfan kφkAB=+∞
7 2 adantr φkAB=+∞AV
8 3 adantlr φkAB=+∞kAB0+∞
9 simpr φkAB=+∞kAB=+∞
10 6 7 8 9 esumpinfval φkAB=+∞*kAB=+∞
11 ltpnf *kAB*kAB<+∞
12 4 11 syl φ*kAB<+∞
13 4 12 gtned φ+∞*kAB
14 13 adantr φkAB=+∞+∞*kAB
15 necom +∞*kAB*kAB+∞
16 15 imbi2i φkAB=+∞+∞*kABφkAB=+∞*kAB+∞
17 14 16 mpbi φkAB=+∞*kAB+∞
18 17 neneqd φkAB=+∞¬*kAB=+∞
19 10 18 pm2.65da φ¬kAB=+∞
20 ralnex kA¬B=+∞¬kAB=+∞
21 19 20 sylibr φkA¬B=+∞
22 21 r19.21bi φkA¬B=+∞
23 eliccxr B0+∞B*
24 xrge0neqmnf B0+∞B−∞
25 xrnemnf B*B−∞BB=+∞
26 25 biimpi B*B−∞BB=+∞
27 23 24 26 syl2anc B0+∞BB=+∞
28 3 27 syl φkABB=+∞
29 28 orcomd φkAB=+∞B
30 29 orcanai φkA¬B=+∞B
31 22 30 mpdan φkAB