Metamath Proof Explorer


Theorem esumcvgre

Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019)

Ref Expression
Hypotheses esumcvgre.0 𝑘 𝜑
esumcvgre.1 ( 𝜑𝐴𝑉 )
esumcvgre.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumcvgre.3 ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ℝ )
Assertion esumcvgre ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 esumcvgre.0 𝑘 𝜑
2 esumcvgre.1 ( 𝜑𝐴𝑉 )
3 esumcvgre.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 esumcvgre.3 ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ℝ )
5 nfre1 𝑘𝑘𝐴 𝐵 = +∞
6 1 5 nfan 𝑘 ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ )
7 2 adantr ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → 𝐴𝑉 )
8 3 adantlr ( ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) ∧ 𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
9 simpr ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → ∃ 𝑘𝐴 𝐵 = +∞ )
10 6 7 8 9 esumpinfval ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → Σ* 𝑘𝐴 𝐵 = +∞ )
11 ltpnf ( Σ* 𝑘𝐴 𝐵 ∈ ℝ → Σ* 𝑘𝐴 𝐵 < +∞ )
12 4 11 syl ( 𝜑 → Σ* 𝑘𝐴 𝐵 < +∞ )
13 4 12 gtned ( 𝜑 → +∞ ≠ Σ* 𝑘𝐴 𝐵 )
14 13 adantr ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → +∞ ≠ Σ* 𝑘𝐴 𝐵 )
15 necom ( +∞ ≠ Σ* 𝑘𝐴 𝐵 ↔ Σ* 𝑘𝐴 𝐵 ≠ +∞ )
16 15 imbi2i ( ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → +∞ ≠ Σ* 𝑘𝐴 𝐵 ) ↔ ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → Σ* 𝑘𝐴 𝐵 ≠ +∞ ) )
17 14 16 mpbi ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → Σ* 𝑘𝐴 𝐵 ≠ +∞ )
18 17 neneqd ( ( 𝜑 ∧ ∃ 𝑘𝐴 𝐵 = +∞ ) → ¬ Σ* 𝑘𝐴 𝐵 = +∞ )
19 10 18 pm2.65da ( 𝜑 → ¬ ∃ 𝑘𝐴 𝐵 = +∞ )
20 ralnex ( ∀ 𝑘𝐴 ¬ 𝐵 = +∞ ↔ ¬ ∃ 𝑘𝐴 𝐵 = +∞ )
21 19 20 sylibr ( 𝜑 → ∀ 𝑘𝐴 ¬ 𝐵 = +∞ )
22 21 r19.21bi ( ( 𝜑𝑘𝐴 ) → ¬ 𝐵 = +∞ )
23 eliccxr ( 𝐵 ∈ ( 0 [,] +∞ ) → 𝐵 ∈ ℝ* )
24 xrge0neqmnf ( 𝐵 ∈ ( 0 [,] +∞ ) → 𝐵 ≠ -∞ )
25 xrnemnf ( ( 𝐵 ∈ ℝ*𝐵 ≠ -∞ ) ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) )
26 25 biimpi ( ( 𝐵 ∈ ℝ*𝐵 ≠ -∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) )
27 23 24 26 syl2anc ( 𝐵 ∈ ( 0 [,] +∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) )
28 3 27 syl ( ( 𝜑𝑘𝐴 ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) )
29 28 orcomd ( ( 𝜑𝑘𝐴 ) → ( 𝐵 = +∞ ∨ 𝐵 ∈ ℝ ) )
30 29 orcanai ( ( ( 𝜑𝑘𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ℝ )
31 22 30 mpdan ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )