Step |
Hyp |
Ref |
Expression |
1 |
|
esumcvgre.0 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumcvgre.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
esumcvgre.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
esumcvgre.3 |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
5 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ |
6 |
1 5
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → 𝐴 ∈ 𝑉 ) |
8 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
9 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
10 |
6 7 8 9
|
esumpinfval |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
11 |
|
ltpnf |
⊢ ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ → Σ* 𝑘 ∈ 𝐴 𝐵 < +∞ ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 < +∞ ) |
13 |
4 12
|
gtned |
⊢ ( 𝜑 → +∞ ≠ Σ* 𝑘 ∈ 𝐴 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → +∞ ≠ Σ* 𝑘 ∈ 𝐴 𝐵 ) |
15 |
|
necom |
⊢ ( +∞ ≠ Σ* 𝑘 ∈ 𝐴 𝐵 ↔ Σ* 𝑘 ∈ 𝐴 𝐵 ≠ +∞ ) |
16 |
15
|
imbi2i |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → +∞ ≠ Σ* 𝑘 ∈ 𝐴 𝐵 ) ↔ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → Σ* 𝑘 ∈ 𝐴 𝐵 ≠ +∞ ) ) |
17 |
14 16
|
mpbi |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → Σ* 𝑘 ∈ 𝐴 𝐵 ≠ +∞ ) |
18 |
17
|
neneqd |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) → ¬ Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
19 |
10 18
|
pm2.65da |
⊢ ( 𝜑 → ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
20 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ 𝐴 ¬ 𝐵 = +∞ ↔ ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
21 |
19 20
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ¬ 𝐵 = +∞ ) |
22 |
21
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝐵 = +∞ ) |
23 |
|
eliccxr |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → 𝐵 ∈ ℝ* ) |
24 |
|
xrge0neqmnf |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → 𝐵 ≠ -∞ ) |
25 |
|
xrnemnf |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
26 |
25
|
biimpi |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
27 |
23 24 26
|
syl2anc |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
28 |
3 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
29 |
28
|
orcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 = +∞ ∨ 𝐵 ∈ ℝ ) ) |
30 |
29
|
orcanai |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ℝ ) |
31 |
22 30
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |