| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esum2d.0 |
⊢ Ⅎ 𝑘 𝐹 |
| 2 |
|
esum2d.1 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐹 = 𝐶 ) |
| 3 |
|
esum2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
esum2d.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 5 |
|
esum2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 6 |
|
esum2dlem.e |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
esumeq1 |
⊢ ( 𝑎 = ∅ → Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑗 ∈ ∅ Σ* 𝑘 ∈ 𝐵 𝐶 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑧 𝑎 = ∅ |
| 9 |
|
iuneq1 |
⊢ ( 𝑎 = ∅ → ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) ) |
| 10 |
8 9
|
esumeq1d |
⊢ ( 𝑎 = ∅ → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 11 |
7 10
|
eqeq12d |
⊢ ( 𝑎 = ∅ → ( Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗 ∈ ∅ Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 ) ) |
| 12 |
|
esumeq1 |
⊢ ( 𝑎 = 𝑏 → Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑧 𝑎 = 𝑏 |
| 14 |
|
iuneq1 |
⊢ ( 𝑎 = 𝑏 → ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ) |
| 15 |
13 14
|
esumeq1d |
⊢ ( 𝑎 = 𝑏 → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 16 |
12 15
|
eqeq12d |
⊢ ( 𝑎 = 𝑏 → ( Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) ) |
| 17 |
|
esumeq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘 ∈ 𝐵 𝐶 ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑧 𝑎 = ( 𝑏 ∪ { 𝑙 } ) |
| 19 |
|
iuneq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) ) |
| 20 |
18 19
|
esumeq1d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 21 |
17 20
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 ) ) |
| 22 |
|
esumeq1 |
⊢ ( 𝑎 = 𝐴 → Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑗 ∈ 𝐴 Σ* 𝑘 ∈ 𝐵 𝐶 ) |
| 23 |
|
nfv |
⊢ Ⅎ 𝑧 𝑎 = 𝐴 |
| 24 |
|
iuneq1 |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 25 |
23 24
|
esumeq1d |
⊢ ( 𝑎 = 𝐴 → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 26 |
22 25
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗 ∈ 𝐴 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ) |
| 27 |
|
esumnul |
⊢ Σ* 𝑧 ∈ ∅ 𝐹 = 0 |
| 28 |
|
0iun |
⊢ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ |
| 29 |
|
esumeq1 |
⊢ ( ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ → Σ* 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∅ 𝐹 ) |
| 30 |
28 29
|
ax-mp |
⊢ Σ* 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∅ 𝐹 |
| 31 |
|
esumnul |
⊢ Σ* 𝑗 ∈ ∅ Σ* 𝑘 ∈ 𝐵 𝐶 = 0 |
| 32 |
27 30 31
|
3eqtr4ri |
⊢ Σ* 𝑗 ∈ ∅ Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → Σ* 𝑗 ∈ ∅ Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 35 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑙 / 𝑗 ⦌ 𝐵 |
| 36 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 |
| 37 |
35 36
|
nfesum2 |
⊢ Ⅎ 𝑗 Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 |
| 38 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 39 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑙 → 𝐶 = ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) |
| 40 |
38 39
|
esumeq12d |
⊢ ( 𝑗 = 𝑙 → Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 = 𝑙 ) → Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) |
| 42 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) |
| 43 |
42
|
eldifad |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑙 ∈ 𝐴 ) |
| 44 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 45 |
44
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ 𝑊 ) |
| 46 |
|
rspcsbela |
⊢ ( ( 𝑙 ∈ 𝐴 ∧ ∀ 𝑗 ∈ 𝐴 𝐵 ∈ 𝑊 ) → ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) |
| 47 |
43 45 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) |
| 48 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → 𝜑 ) |
| 49 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → 𝑙 ∈ 𝐴 ) |
| 50 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 51 |
5
|
ex |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 52 |
51
|
sbcimdv |
⊢ ( 𝜑 → ( [ 𝑙 / 𝑗 ] ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → [ 𝑙 / 𝑗 ] 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 53 |
|
sbcan |
⊢ ( [ 𝑙 / 𝑗 ] ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( [ 𝑙 / 𝑗 ] 𝑗 ∈ 𝐴 ∧ [ 𝑙 / 𝑗 ] 𝑘 ∈ 𝐵 ) ) |
| 54 |
|
sbcel1v |
⊢ ( [ 𝑙 / 𝑗 ] 𝑗 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴 ) |
| 55 |
|
sbcel2 |
⊢ ( [ 𝑙 / 𝑗 ] 𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 56 |
54 55
|
anbi12i |
⊢ ( ( [ 𝑙 / 𝑗 ] 𝑗 ∈ 𝐴 ∧ [ 𝑙 / 𝑗 ] 𝑘 ∈ 𝐵 ) ↔ ( 𝑙 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 57 |
53 56
|
bitri |
⊢ ( [ 𝑙 / 𝑗 ] ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑙 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 58 |
|
vex |
⊢ 𝑙 ∈ V |
| 59 |
|
sbcel1g |
⊢ ( 𝑙 ∈ V → ( [ 𝑙 / 𝑗 ] 𝐶 ∈ ( 0 [,] +∞ ) ↔ ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 60 |
58 59
|
ax-mp |
⊢ ( [ 𝑙 / 𝑗 ] 𝐶 ∈ ( 0 [,] +∞ ) ↔ ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 61 |
52 57 60
|
3imtr3g |
⊢ ( 𝜑 → ( ( 𝑙 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 62 |
61
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝐴 ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) → ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 63 |
48 49 50 62
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∀ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑗 ⦌ 𝐵 |
| 66 |
65
|
esumcl |
⊢ ( ( ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ∧ ∀ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 67 |
47 64 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 68 |
37 41 42 67
|
esumsnf |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) |
| 69 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) |
| 70 |
|
nfv |
⊢ Ⅎ 𝑗 𝑧 = 〈 𝑙 , 𝑘 〉 |
| 71 |
36
|
nfeq2 |
⊢ Ⅎ 𝑗 𝐹 = ⦋ 𝑙 / 𝑗 ⦌ 𝐶 |
| 72 |
70 71
|
nfim |
⊢ Ⅎ 𝑗 ( 𝑧 = 〈 𝑙 , 𝑘 〉 → 𝐹 = ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) |
| 73 |
|
opeq1 |
⊢ ( 𝑗 = 𝑙 → 〈 𝑗 , 𝑘 〉 = 〈 𝑙 , 𝑘 〉 ) |
| 74 |
73
|
eqeq2d |
⊢ ( 𝑗 = 𝑙 → ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ 𝑧 = 〈 𝑙 , 𝑘 〉 ) ) |
| 75 |
39
|
eqeq2d |
⊢ ( 𝑗 = 𝑙 → ( 𝐹 = 𝐶 ↔ 𝐹 = ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) ) |
| 76 |
74 75
|
imbi12d |
⊢ ( 𝑗 = 𝑙 → ( ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐹 = 𝐶 ) ↔ ( 𝑧 = 〈 𝑙 , 𝑘 〉 → 𝐹 = ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) ) ) |
| 77 |
72 76 2
|
chvarfv |
⊢ ( 𝑧 = 〈 𝑙 , 𝑘 〉 → 𝐹 = ⦋ 𝑙 / 𝑗 ⦌ 𝐶 ) |
| 78 |
|
vsnid |
⊢ 𝑗 ∈ { 𝑗 } |
| 79 |
78
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝑗 ∈ { 𝑗 } ) |
| 80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) |
| 81 |
79 80
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 〈 𝑗 , 𝑘 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 82 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 2nd ‘ 𝑧 ) ∈ 𝐵 ) |
| 83 |
|
xp1st |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑗 } ) |
| 84 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
| 85 |
84
|
elsn |
⊢ ( ( 1st ‘ 𝑧 ) ∈ { 𝑗 } ↔ ( 1st ‘ 𝑧 ) = 𝑗 ) |
| 86 |
83 85
|
sylib |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st ‘ 𝑧 ) = 𝑗 ) |
| 87 |
|
eqop |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ ( ( 1st ‘ 𝑧 ) = 𝑗 ∧ ( 2nd ‘ 𝑧 ) = 𝑘 ) ) ) |
| 88 |
86 87
|
mpbirand |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ ( 2nd ‘ 𝑧 ) = 𝑘 ) ) |
| 89 |
|
eqcom |
⊢ ( ( 2nd ‘ 𝑧 ) = 𝑘 ↔ 𝑘 = ( 2nd ‘ 𝑧 ) ) |
| 90 |
88 89
|
bitrdi |
⊢ ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ 𝑘 = ( 2nd ‘ 𝑧 ) ) ) |
| 91 |
90
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ 𝑘 = ( 2nd ‘ 𝑧 ) ) ) |
| 92 |
91
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∀ 𝑘 ∈ 𝐵 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ 𝑘 = ( 2nd ‘ 𝑧 ) ) ) |
| 93 |
|
reu6i |
⊢ ( ( ( 2nd ‘ 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘 ∈ 𝐵 ( 𝑧 = 〈 𝑗 , 𝑘 〉 ↔ 𝑘 = ( 2nd ‘ 𝑧 ) ) ) → ∃! 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 94 |
82 92 93
|
syl2an2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃! 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 95 |
81 94
|
f1mptrn |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Fun ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ) |
| 96 |
95
|
ex |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 → Fun ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ) ) |
| 97 |
96
|
sbcimdv |
⊢ ( 𝜑 → ( [ 𝑙 / 𝑗 ] 𝑗 ∈ 𝐴 → [ 𝑙 / 𝑗 ] Fun ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ) ) |
| 98 |
|
sbcfung |
⊢ ( 𝑙 ∈ V → ( [ 𝑙 / 𝑗 ] Fun ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ↔ Fun ⦋ 𝑙 / 𝑗 ⦌ ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ) ) |
| 99 |
|
csbcnv |
⊢ ◡ ⦋ 𝑙 / 𝑗 ⦌ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) = ⦋ 𝑙 / 𝑗 ⦌ ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) |
| 100 |
|
csbmpt12 |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) = ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ ⦋ 𝑙 / 𝑗 ⦌ 〈 𝑗 , 𝑘 〉 ) ) |
| 101 |
|
csbopg |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ 〈 𝑗 , 𝑘 〉 = 〈 ⦋ 𝑙 / 𝑗 ⦌ 𝑗 , ⦋ 𝑙 / 𝑗 ⦌ 𝑘 〉 ) |
| 102 |
|
csbvarg |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ 𝑗 = 𝑙 ) |
| 103 |
|
csbconstg |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ 𝑘 = 𝑘 ) |
| 104 |
102 103
|
opeq12d |
⊢ ( 𝑙 ∈ V → 〈 ⦋ 𝑙 / 𝑗 ⦌ 𝑗 , ⦋ 𝑙 / 𝑗 ⦌ 𝑘 〉 = 〈 𝑙 , 𝑘 〉 ) |
| 105 |
101 104
|
eqtrd |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ 〈 𝑗 , 𝑘 〉 = 〈 𝑙 , 𝑘 〉 ) |
| 106 |
105
|
mpteq2dv |
⊢ ( 𝑙 ∈ V → ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ ⦋ 𝑙 / 𝑗 ⦌ 〈 𝑗 , 𝑘 〉 ) = ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 107 |
100 106
|
eqtrd |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) = ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 108 |
107
|
cnveqd |
⊢ ( 𝑙 ∈ V → ◡ ⦋ 𝑙 / 𝑗 ⦌ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) = ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 109 |
99 108
|
eqtr3id |
⊢ ( 𝑙 ∈ V → ⦋ 𝑙 / 𝑗 ⦌ ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) = ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 110 |
109
|
funeqd |
⊢ ( 𝑙 ∈ V → ( Fun ⦋ 𝑙 / 𝑗 ⦌ ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ↔ Fun ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) ) |
| 111 |
98 110
|
bitrd |
⊢ ( 𝑙 ∈ V → ( [ 𝑙 / 𝑗 ] Fun ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ↔ Fun ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) ) |
| 112 |
58 111
|
ax-mp |
⊢ ( [ 𝑙 / 𝑗 ] Fun ◡ ( 𝑘 ∈ 𝐵 ↦ 〈 𝑗 , 𝑘 〉 ) ↔ Fun ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 113 |
97 54 112
|
3imtr3g |
⊢ ( 𝜑 → ( 𝑙 ∈ 𝐴 → Fun ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) ) |
| 114 |
113
|
imp |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐴 ) → Fun ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 115 |
43 114
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Fun ◡ ( 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ↦ 〈 𝑙 , 𝑘 〉 ) ) |
| 116 |
|
vsnid |
⊢ 𝑙 ∈ { 𝑙 } |
| 117 |
116
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → 𝑙 ∈ { 𝑙 } ) |
| 118 |
117 50
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → 〈 𝑙 , 𝑘 〉 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 119 |
1 69 65 77 47 115 63 118
|
esumc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 = Σ* 𝑧 ∈ { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } 𝐹 ) |
| 120 |
|
nfab1 |
⊢ Ⅎ 𝑡 { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } |
| 121 |
|
nfcv |
⊢ Ⅎ 𝑡 ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 122 |
|
opeq1 |
⊢ ( 𝑖 = 𝑙 → 〈 𝑖 , 𝑘 〉 = 〈 𝑙 , 𝑘 〉 ) |
| 123 |
122
|
eqeq2d |
⊢ ( 𝑖 = 𝑙 → ( 𝑡 = 〈 𝑖 , 𝑘 〉 ↔ 𝑡 = 〈 𝑙 , 𝑘 〉 ) ) |
| 124 |
123
|
rexbidv |
⊢ ( 𝑖 = 𝑙 → ( ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑖 , 𝑘 〉 ↔ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 ) ) |
| 125 |
58 124
|
rexsn |
⊢ ( ∃ 𝑖 ∈ { 𝑙 } ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑖 , 𝑘 〉 ↔ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 ) |
| 126 |
|
elxp2 |
⊢ ( 𝑡 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ↔ ∃ 𝑖 ∈ { 𝑙 } ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑖 , 𝑘 〉 ) |
| 127 |
|
abid |
⊢ ( 𝑡 ∈ { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } ↔ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 ) |
| 128 |
125 126 127
|
3bitr4ri |
⊢ ( 𝑡 ∈ { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } ↔ 𝑡 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 129 |
120 121 128
|
eqri |
⊢ { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } = ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 130 |
|
esumeq1 |
⊢ ( { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } = ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) → Σ* 𝑧 ∈ { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } 𝐹 = Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) |
| 131 |
129 130
|
ax-mp |
⊢ Σ* 𝑧 ∈ { 𝑡 ∣ ∃ 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 𝑡 = 〈 𝑙 , 𝑘 〉 } 𝐹 = Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 |
| 132 |
119 131
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑘 ∈ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ⦋ 𝑙 / 𝑗 ⦌ 𝐶 = Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) |
| 133 |
68 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) |
| 134 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) |
| 135 |
34 134
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 +𝑒 Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘 ∈ 𝐵 𝐶 ) = ( Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) ) |
| 136 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑏 |
| 138 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑙 } |
| 139 |
|
vex |
⊢ 𝑏 ∈ V |
| 140 |
139
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑏 ∈ V ) |
| 141 |
|
vsnex |
⊢ { 𝑙 } ∈ V |
| 142 |
141
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → { 𝑙 } ∈ V ) |
| 143 |
42
|
eldifbd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ¬ 𝑙 ∈ 𝑏 ) |
| 144 |
|
disjsn |
⊢ ( ( 𝑏 ∩ { 𝑙 } ) = ∅ ↔ ¬ 𝑙 ∈ 𝑏 ) |
| 145 |
143 144
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( 𝑏 ∩ { 𝑙 } ) = ∅ ) |
| 146 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → 𝜑 ) |
| 147 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → 𝑏 ⊆ 𝐴 ) |
| 148 |
147
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → 𝑗 ∈ 𝐴 ) |
| 149 |
5
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 150 |
149
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 151 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 152 |
151
|
esumcl |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 153 |
4 150 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 154 |
146 148 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 155 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ { 𝑙 } ) → 𝜑 ) |
| 156 |
43
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → { 𝑙 } ⊆ 𝐴 ) |
| 157 |
156
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ { 𝑙 } ) → 𝑗 ∈ 𝐴 ) |
| 158 |
155 157 153
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ { 𝑙 } ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 159 |
136 137 138 140 142 145 154 158
|
esumsplit |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘 ∈ 𝐵 𝐶 = ( Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 +𝑒 Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘 ∈ 𝐵 𝐶 ) ) |
| 160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘 ∈ 𝐵 𝐶 = ( Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 +𝑒 Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘 ∈ 𝐵 𝐶 ) ) |
| 161 |
|
iunxun |
⊢ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ∪ 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) ) |
| 162 |
138 35
|
nfxp |
⊢ Ⅎ 𝑗 ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 163 |
|
sneq |
⊢ ( 𝑗 = 𝑙 → { 𝑗 } = { 𝑙 } ) |
| 164 |
163 38
|
xpeq12d |
⊢ ( 𝑗 = 𝑙 → ( { 𝑗 } × 𝐵 ) = ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 165 |
162 164
|
iunxsngf |
⊢ ( 𝑙 ∈ V → ∪ 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) = ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 166 |
58 165
|
ax-mp |
⊢ ∪ 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) = ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 167 |
166
|
uneq2i |
⊢ ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ∪ 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) ) = ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 168 |
161 167
|
eqtri |
⊢ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 169 |
|
esumeq1 |
⊢ ( ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) = ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) 𝐹 ) |
| 170 |
168 169
|
ax-mp |
⊢ Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) 𝐹 |
| 171 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) |
| 172 |
|
nfcv |
⊢ Ⅎ 𝑧 ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) |
| 173 |
|
nfcv |
⊢ Ⅎ 𝑧 ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) |
| 174 |
|
vsnex |
⊢ { 𝑗 } ∈ V |
| 175 |
148 44
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → 𝐵 ∈ 𝑊 ) |
| 176 |
|
xpexg |
⊢ ( ( { 𝑗 } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 177 |
174 175 176
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 178 |
177
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∀ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 179 |
|
iunexg |
⊢ ( ( 𝑏 ∈ V ∧ ∀ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∈ V ) → ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 180 |
139 178 179
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 181 |
|
xpexg |
⊢ ( ( { 𝑙 } ∈ V ∧ ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ∈ 𝑊 ) → ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ∈ V ) |
| 182 |
141 47 181
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ∈ V ) |
| 183 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → 𝑗 ∈ 𝑏 ) |
| 184 |
143
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → ¬ 𝑙 ∈ 𝑏 ) |
| 185 |
|
nelne2 |
⊢ ( ( 𝑗 ∈ 𝑏 ∧ ¬ 𝑙 ∈ 𝑏 ) → 𝑗 ≠ 𝑙 ) |
| 186 |
183 184 185
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → 𝑗 ≠ 𝑙 ) |
| 187 |
|
disjsn2 |
⊢ ( 𝑗 ≠ 𝑙 → ( { 𝑗 } ∩ { 𝑙 } ) = ∅ ) |
| 188 |
|
xpdisj1 |
⊢ ( ( { 𝑗 } ∩ { 𝑙 } ) = ∅ → ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) |
| 189 |
186 187 188
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑗 ∈ 𝑏 ) → ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) |
| 190 |
189
|
iuneq2dv |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∪ 𝑗 ∈ 𝑏 ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) = ∪ 𝑗 ∈ 𝑏 ∅ ) |
| 191 |
162
|
iunin1f |
⊢ ∪ 𝑗 ∈ 𝑏 ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) = ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) |
| 192 |
|
iun0 |
⊢ ∪ 𝑗 ∈ 𝑏 ∅ = ∅ |
| 193 |
190 191 192
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) = ∅ ) |
| 194 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ) → 𝜑 ) |
| 195 |
|
iunss1 |
⊢ ( 𝑏 ⊆ 𝐴 → ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 196 |
147 195
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 197 |
196
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 198 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 199 |
|
nfiu1 |
⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 200 |
199
|
nfcri |
⊢ Ⅎ 𝑗 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 201 |
198 200
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 202 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 203 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 204 |
1 203
|
nfel |
⊢ Ⅎ 𝑘 𝐹 ∈ ( 0 [,] +∞ ) |
| 205 |
2
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝐹 = 𝐶 ) |
| 206 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝜑 ) |
| 207 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝑗 ∈ 𝐴 ) |
| 208 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝑘 ∈ 𝐵 ) |
| 209 |
206 207 208 5
|
syl12anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 210 |
205 209
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 211 |
|
elsnxp |
⊢ ( 𝑗 ∈ 𝐴 → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) |
| 212 |
211
|
biimpa |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 213 |
212
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 214 |
202 204 210 213
|
r19.29af2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 215 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 216 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 217 |
215 216
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑗 ∈ 𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 218 |
201 214 217
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 219 |
194 197 218
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 220 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) → 𝜑 ) |
| 221 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
| 222 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑙 |
| 223 |
221 222 162 164
|
ssiun2sf |
⊢ ( 𝑙 ∈ 𝐴 → ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 224 |
43 223
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 225 |
224
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 226 |
220 225 218
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 227 |
171 172 173 180 182 193 219 226
|
esumsplit |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑧 ∈ ( ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) ) 𝐹 = ( Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) ) |
| 228 |
170 227
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = ( Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) ) |
| 229 |
228
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = ( Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × ⦋ 𝑙 / 𝑗 ⦌ 𝐵 ) 𝐹 ) ) |
| 230 |
135 160 229
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) ∧ Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 231 |
230
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑏 ⊆ 𝐴 ∧ 𝑙 ∈ ( 𝐴 ∖ 𝑏 ) ) ) → ( Σ* 𝑗 ∈ 𝑏 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 ) ) |
| 232 |
11 16 21 26 33 231 6
|
findcard2d |
⊢ ( 𝜑 → Σ* 𝑗 ∈ 𝐴 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |