Metamath Proof Explorer


Theorem esum2dlem

Description: Lemma for esum2d (finite case). (Contributed by Thierry Arnoux, 17-May-2020) (Proof shortened by AV, 17-Sep-2021)

Ref Expression
Hypotheses esum2d.0 𝑘 𝐹
esum2d.1 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐹 = 𝐶 )
esum2d.2 ( 𝜑𝐴𝑉 )
esum2d.3 ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 )
esum2d.4 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
esum2dlem.e ( 𝜑𝐴 ∈ Fin )
Assertion esum2dlem ( 𝜑 → Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 )

Proof

Step Hyp Ref Expression
1 esum2d.0 𝑘 𝐹
2 esum2d.1 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐹 = 𝐶 )
3 esum2d.2 ( 𝜑𝐴𝑉 )
4 esum2d.3 ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 )
5 esum2d.4 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
6 esum2dlem.e ( 𝜑𝐴 ∈ Fin )
7 esumeq1 ( 𝑎 = ∅ → Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑗 ∈ ∅ Σ* 𝑘𝐵 𝐶 )
8 nfv 𝑧 𝑎 = ∅
9 iuneq1 ( 𝑎 = ∅ → 𝑗𝑎 ( { 𝑗 } × 𝐵 ) = 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) )
10 8 9 esumeq1d ( 𝑎 = ∅ → Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 )
11 7 10 eqeq12d ( 𝑎 = ∅ → ( Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗 ∈ ∅ Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 ) )
12 esumeq1 ( 𝑎 = 𝑏 → Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 )
13 nfv 𝑧 𝑎 = 𝑏
14 iuneq1 ( 𝑎 = 𝑏 𝑗𝑎 ( { 𝑗 } × 𝐵 ) = 𝑗𝑏 ( { 𝑗 } × 𝐵 ) )
15 13 14 esumeq1d ( 𝑎 = 𝑏 → Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 )
16 12 15 eqeq12d ( 𝑎 = 𝑏 → ( Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) )
17 esumeq1 ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘𝐵 𝐶 )
18 nfv 𝑧 𝑎 = ( 𝑏 ∪ { 𝑙 } )
19 iuneq1 ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → 𝑗𝑎 ( { 𝑗 } × 𝐵 ) = 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) )
20 18 19 esumeq1d ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 )
21 17 20 eqeq12d ( 𝑎 = ( 𝑏 ∪ { 𝑙 } ) → ( Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 ) )
22 esumeq1 ( 𝑎 = 𝐴 → Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 )
23 nfv 𝑧 𝑎 = 𝐴
24 iuneq1 ( 𝑎 = 𝐴 𝑗𝑎 ( { 𝑗 } × 𝐵 ) = 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
25 23 24 esumeq1d ( 𝑎 = 𝐴 → Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 )
26 22 25 eqeq12d ( 𝑎 = 𝐴 → ( Σ* 𝑗𝑎 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) )
27 esumnul Σ* 𝑧 ∈ ∅ 𝐹 = 0
28 0iun 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅
29 esumeq1 ( 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ → Σ* 𝑧 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∅ 𝐹 )
30 28 29 ax-mp Σ* 𝑧 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ∅ 𝐹
31 esumnul Σ* 𝑗 ∈ ∅ Σ* 𝑘𝐵 𝐶 = 0
32 27 30 31 3eqtr4ri Σ* 𝑗 ∈ ∅ Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹
33 32 a1i ( 𝜑 → Σ* 𝑗 ∈ ∅ Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐹 )
34 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 )
35 nfcsb1v 𝑗 𝑙 / 𝑗 𝐵
36 nfcsb1v 𝑗 𝑙 / 𝑗 𝐶
37 35 36 nfesum2 𝑗 Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶
38 csbeq1a ( 𝑗 = 𝑙𝐵 = 𝑙 / 𝑗 𝐵 )
39 csbeq1a ( 𝑗 = 𝑙𝐶 = 𝑙 / 𝑗 𝐶 )
40 38 39 esumeq12d ( 𝑗 = 𝑙 → Σ* 𝑘𝐵 𝐶 = Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 )
41 40 adantl ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗 = 𝑙 ) → Σ* 𝑘𝐵 𝐶 = Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 )
42 simprr ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑙 ∈ ( 𝐴𝑏 ) )
43 42 eldifad ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑙𝐴 )
44 4 adantlr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝐴 ) → 𝐵𝑊 )
45 44 ralrimiva ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ∀ 𝑗𝐴 𝐵𝑊 )
46 rspcsbela ( ( 𝑙𝐴 ∧ ∀ 𝑗𝐴 𝐵𝑊 ) → 𝑙 / 𝑗 𝐵𝑊 )
47 43 45 46 syl2anc ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑙 / 𝑗 𝐵𝑊 )
48 simpll ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑘 𝑙 / 𝑗 𝐵 ) → 𝜑 )
49 43 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑘 𝑙 / 𝑗 𝐵 ) → 𝑙𝐴 )
50 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑘 𝑙 / 𝑗 𝐵 ) → 𝑘 𝑙 / 𝑗 𝐵 )
51 5 ex ( 𝜑 → ( ( 𝑗𝐴𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) )
52 51 sbcimdv ( 𝜑 → ( [ 𝑙 / 𝑗 ] ( 𝑗𝐴𝑘𝐵 ) → [ 𝑙 / 𝑗 ] 𝐶 ∈ ( 0 [,] +∞ ) ) )
53 sbcan ( [ 𝑙 / 𝑗 ] ( 𝑗𝐴𝑘𝐵 ) ↔ ( [ 𝑙 / 𝑗 ] 𝑗𝐴[ 𝑙 / 𝑗 ] 𝑘𝐵 ) )
54 sbcel1v ( [ 𝑙 / 𝑗 ] 𝑗𝐴𝑙𝐴 )
55 sbcel2 ( [ 𝑙 / 𝑗 ] 𝑘𝐵𝑘 𝑙 / 𝑗 𝐵 )
56 54 55 anbi12i ( ( [ 𝑙 / 𝑗 ] 𝑗𝐴[ 𝑙 / 𝑗 ] 𝑘𝐵 ) ↔ ( 𝑙𝐴𝑘 𝑙 / 𝑗 𝐵 ) )
57 53 56 bitri ( [ 𝑙 / 𝑗 ] ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑙𝐴𝑘 𝑙 / 𝑗 𝐵 ) )
58 vex 𝑙 ∈ V
59 sbcel1g ( 𝑙 ∈ V → ( [ 𝑙 / 𝑗 ] 𝐶 ∈ ( 0 [,] +∞ ) ↔ 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) ) )
60 58 59 ax-mp ( [ 𝑙 / 𝑗 ] 𝐶 ∈ ( 0 [,] +∞ ) ↔ 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) )
61 52 57 60 3imtr3g ( 𝜑 → ( ( 𝑙𝐴𝑘 𝑙 / 𝑗 𝐵 ) → 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) ) )
62 61 imp ( ( 𝜑 ∧ ( 𝑙𝐴𝑘 𝑙 / 𝑗 𝐵 ) ) → 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) )
63 48 49 50 62 syl12anc ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑘 𝑙 / 𝑗 𝐵 ) → 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) )
64 63 ralrimiva ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ∀ 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) )
65 nfcv 𝑘 𝑙 / 𝑗 𝐵
66 65 esumcl ( ( 𝑙 / 𝑗 𝐵𝑊 ∧ ∀ 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) )
67 47 64 66 syl2anc ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 ∈ ( 0 [,] +∞ ) )
68 37 41 42 67 esumsnf ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘𝐵 𝐶 = Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 )
69 nfv 𝑘 ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) )
70 nfv 𝑗 𝑧 = ⟨ 𝑙 , 𝑘
71 36 nfeq2 𝑗 𝐹 = 𝑙 / 𝑗 𝐶
72 70 71 nfim 𝑗 ( 𝑧 = ⟨ 𝑙 , 𝑘 ⟩ → 𝐹 = 𝑙 / 𝑗 𝐶 )
73 opeq1 ( 𝑗 = 𝑙 → ⟨ 𝑗 , 𝑘 ⟩ = ⟨ 𝑙 , 𝑘 ⟩ )
74 73 eqeq2d ( 𝑗 = 𝑙 → ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ 𝑧 = ⟨ 𝑙 , 𝑘 ⟩ ) )
75 39 eqeq2d ( 𝑗 = 𝑙 → ( 𝐹 = 𝐶𝐹 = 𝑙 / 𝑗 𝐶 ) )
76 74 75 imbi12d ( 𝑗 = 𝑙 → ( ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐹 = 𝐶 ) ↔ ( 𝑧 = ⟨ 𝑙 , 𝑘 ⟩ → 𝐹 = 𝑙 / 𝑗 𝐶 ) ) )
77 72 76 2 chvarfv ( 𝑧 = ⟨ 𝑙 , 𝑘 ⟩ → 𝐹 = 𝑙 / 𝑗 𝐶 )
78 vsnid 𝑗 ∈ { 𝑗 }
79 78 a1i ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝑗 ∈ { 𝑗 } )
80 simpr ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝑘𝐵 )
81 79 80 opelxpd ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ ( { 𝑗 } × 𝐵 ) )
82 xp2nd ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 2nd𝑧 ) ∈ 𝐵 )
83 xp1st ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑗 } )
84 fvex ( 1st𝑧 ) ∈ V
85 84 elsn ( ( 1st𝑧 ) ∈ { 𝑗 } ↔ ( 1st𝑧 ) = 𝑗 )
86 83 85 sylib ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) = 𝑗 )
87 eqop ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) = 𝑘 ) ) )
88 86 87 mpbirand ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ ( 2nd𝑧 ) = 𝑘 ) )
89 eqcom ( ( 2nd𝑧 ) = 𝑘𝑘 = ( 2nd𝑧 ) )
90 88 89 bitrdi ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ 𝑘 = ( 2nd𝑧 ) ) )
91 90 ad2antlr ( ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) → ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ 𝑘 = ( 2nd𝑧 ) ) )
92 91 ralrimiva ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∀ 𝑘𝐵 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ 𝑘 = ( 2nd𝑧 ) ) )
93 reu6i ( ( ( 2nd𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘𝐵 ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ↔ 𝑘 = ( 2nd𝑧 ) ) ) → ∃! 𝑘𝐵 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ )
94 82 92 93 syl2an2 ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃! 𝑘𝐵 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ )
95 81 94 f1mptrn ( ( 𝜑𝑗𝐴 ) → Fun ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) )
96 95 ex ( 𝜑 → ( 𝑗𝐴 → Fun ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ) )
97 96 sbcimdv ( 𝜑 → ( [ 𝑙 / 𝑗 ] 𝑗𝐴[ 𝑙 / 𝑗 ] Fun ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ) )
98 sbcfung ( 𝑙 ∈ V → ( [ 𝑙 / 𝑗 ] Fun ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ↔ Fun 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ) )
99 csbcnv 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) = 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ )
100 csbmpt12 ( 𝑙 ∈ V → 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) = ( 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝑗 , 𝑘 ⟩ ) )
101 csbopg ( 𝑙 ∈ V → 𝑙 / 𝑗 𝑗 , 𝑘 ⟩ = ⟨ 𝑙 / 𝑗 𝑗 , 𝑙 / 𝑗 𝑘 ⟩ )
102 csbvarg ( 𝑙 ∈ V → 𝑙 / 𝑗 𝑗 = 𝑙 )
103 csbconstg ( 𝑙 ∈ V → 𝑙 / 𝑗 𝑘 = 𝑘 )
104 102 103 opeq12d ( 𝑙 ∈ V → ⟨ 𝑙 / 𝑗 𝑗 , 𝑙 / 𝑗 𝑘 ⟩ = ⟨ 𝑙 , 𝑘 ⟩ )
105 101 104 eqtrd ( 𝑙 ∈ V → 𝑙 / 𝑗 𝑗 , 𝑘 ⟩ = ⟨ 𝑙 , 𝑘 ⟩ )
106 105 mpteq2dv ( 𝑙 ∈ V → ( 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝑗 , 𝑘 ⟩ ) = ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
107 100 106 eqtrd ( 𝑙 ∈ V → 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) = ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
108 107 cnveqd ( 𝑙 ∈ V → 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) = ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
109 99 108 syl5eqr ( 𝑙 ∈ V → 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) = ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
110 109 funeqd ( 𝑙 ∈ V → ( Fun 𝑙 / 𝑗 ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ↔ Fun ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) ) )
111 98 110 bitrd ( 𝑙 ∈ V → ( [ 𝑙 / 𝑗 ] Fun ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ↔ Fun ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) ) )
112 58 111 ax-mp ( [ 𝑙 / 𝑗 ] Fun ( 𝑘𝐵 ↦ ⟨ 𝑗 , 𝑘 ⟩ ) ↔ Fun ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
113 97 54 112 3imtr3g ( 𝜑 → ( 𝑙𝐴 → Fun ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) ) )
114 113 imp ( ( 𝜑𝑙𝐴 ) → Fun ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
115 43 114 syldan ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Fun ( 𝑘 𝑙 / 𝑗 𝐵 ↦ ⟨ 𝑙 , 𝑘 ⟩ ) )
116 vsnid 𝑙 ∈ { 𝑙 }
117 116 a1i ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑘 𝑙 / 𝑗 𝐵 ) → 𝑙 ∈ { 𝑙 } )
118 117 50 opelxpd ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑘 𝑙 / 𝑗 𝐵 ) → ⟨ 𝑙 , 𝑘 ⟩ ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
119 1 69 65 77 47 115 63 118 esumc ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 = Σ* 𝑧 ∈ { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } 𝐹 )
120 nfab1 𝑡 { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ }
121 nfcv 𝑡 ( { 𝑙 } × 𝑙 / 𝑗 𝐵 )
122 opeq1 ( 𝑖 = 𝑙 → ⟨ 𝑖 , 𝑘 ⟩ = ⟨ 𝑙 , 𝑘 ⟩ )
123 122 eqeq2d ( 𝑖 = 𝑙 → ( 𝑡 = ⟨ 𝑖 , 𝑘 ⟩ ↔ 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ ) )
124 123 rexbidv ( 𝑖 = 𝑙 → ( ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑖 , 𝑘 ⟩ ↔ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ ) )
125 58 124 rexsn ( ∃ 𝑖 ∈ { 𝑙 } ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑖 , 𝑘 ⟩ ↔ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ )
126 elxp2 ( 𝑡 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ↔ ∃ 𝑖 ∈ { 𝑙 } ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑖 , 𝑘 ⟩ )
127 abid ( 𝑡 ∈ { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } ↔ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ )
128 125 126 127 3bitr4ri ( 𝑡 ∈ { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } ↔ 𝑡 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
129 120 121 128 eqri { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } = ( { 𝑙 } × 𝑙 / 𝑗 𝐵 )
130 esumeq1 ( { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } = ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) → Σ* 𝑧 ∈ { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } 𝐹 = Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 )
131 129 130 ax-mp Σ* 𝑧 ∈ { 𝑡 ∣ ∃ 𝑘 𝑙 / 𝑗 𝐵 𝑡 = ⟨ 𝑙 , 𝑘 ⟩ } 𝐹 = Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹
132 119 131 eqtrdi ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑘 𝑙 / 𝑗 𝐵 𝑙 / 𝑗 𝐶 = Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 )
133 68 132 eqtrd ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 )
134 133 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 )
135 34 134 oveq12d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 +𝑒 Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘𝐵 𝐶 ) = ( Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 ) )
136 nfv 𝑗 ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) )
137 nfcv 𝑗 𝑏
138 nfcv 𝑗 { 𝑙 }
139 vex 𝑏 ∈ V
140 139 a1i ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑏 ∈ V )
141 snex { 𝑙 } ∈ V
142 141 a1i ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → { 𝑙 } ∈ V )
143 42 eldifbd ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ¬ 𝑙𝑏 )
144 disjsn ( ( 𝑏 ∩ { 𝑙 } ) = ∅ ↔ ¬ 𝑙𝑏 )
145 143 144 sylibr ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑏 ∩ { 𝑙 } ) = ∅ )
146 simpll ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → 𝜑 )
147 simprl ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑏𝐴 )
148 147 sselda ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → 𝑗𝐴 )
149 5 anassrs ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
150 149 ralrimiva ( ( 𝜑𝑗𝐴 ) → ∀ 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
151 nfcv 𝑘 𝐵
152 151 esumcl ( ( 𝐵𝑊 ∧ ∀ 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
153 4 150 152 syl2anc ( ( 𝜑𝑗𝐴 ) → Σ* 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
154 146 148 153 syl2anc ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → Σ* 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
155 simpll ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗 ∈ { 𝑙 } ) → 𝜑 )
156 43 snssd ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → { 𝑙 } ⊆ 𝐴 )
157 156 sselda ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗 ∈ { 𝑙 } ) → 𝑗𝐴 )
158 155 157 153 syl2anc ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗 ∈ { 𝑙 } ) → Σ* 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
159 136 137 138 140 142 145 154 158 esumsplit ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘𝐵 𝐶 = ( Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 +𝑒 Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘𝐵 𝐶 ) )
160 159 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘𝐵 𝐶 = ( Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 +𝑒 Σ* 𝑗 ∈ { 𝑙 } Σ* 𝑘𝐵 𝐶 ) )
161 iunxun 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) )
162 138 35 nfxp 𝑗 ( { 𝑙 } × 𝑙 / 𝑗 𝐵 )
163 sneq ( 𝑗 = 𝑙 → { 𝑗 } = { 𝑙 } )
164 163 38 xpeq12d ( 𝑗 = 𝑙 → ( { 𝑗 } × 𝐵 ) = ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
165 162 164 iunxsngf ( 𝑙 ∈ V → 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) = ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
166 58 165 ax-mp 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) = ( { 𝑙 } × 𝑙 / 𝑗 𝐵 )
167 166 uneq2i ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ 𝑗 ∈ { 𝑙 } ( { 𝑗 } × 𝐵 ) ) = ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
168 161 167 eqtri 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
169 esumeq1 ( 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) = ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) → Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) 𝐹 )
170 168 169 ax-mp Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = Σ* 𝑧 ∈ ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) 𝐹
171 nfv 𝑧 ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) )
172 nfcv 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 )
173 nfcv 𝑧 ( { 𝑙 } × 𝑙 / 𝑗 𝐵 )
174 snex { 𝑗 } ∈ V
175 148 44 syldan ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → 𝐵𝑊 )
176 xpexg ( ( { 𝑗 } ∈ V ∧ 𝐵𝑊 ) → ( { 𝑗 } × 𝐵 ) ∈ V )
177 174 175 176 sylancr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → ( { 𝑗 } × 𝐵 ) ∈ V )
178 177 ralrimiva ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ∀ 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∈ V )
179 iunexg ( ( 𝑏 ∈ V ∧ ∀ 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∈ V ) → 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∈ V )
180 139 178 179 sylancr ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∈ V )
181 xpexg ( ( { 𝑙 } ∈ V ∧ 𝑙 / 𝑗 𝐵𝑊 ) → ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ∈ V )
182 141 47 181 sylancr ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ∈ V )
183 simpr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → 𝑗𝑏 )
184 143 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → ¬ 𝑙𝑏 )
185 nelne2 ( ( 𝑗𝑏 ∧ ¬ 𝑙𝑏 ) → 𝑗𝑙 )
186 183 184 185 syl2anc ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → 𝑗𝑙 )
187 disjsn2 ( 𝑗𝑙 → ( { 𝑗 } ∩ { 𝑙 } ) = ∅ )
188 xpdisj1 ( ( { 𝑗 } ∩ { 𝑙 } ) = ∅ → ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) = ∅ )
189 186 187 188 3syl ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑗𝑏 ) → ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) = ∅ )
190 189 iuneq2dv ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑗𝑏 ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) = 𝑗𝑏 ∅ )
191 162 iunin1f 𝑗𝑏 ( ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) = ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) )
192 iun0 𝑗𝑏 ∅ = ∅
193 190 191 192 3eqtr3g ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∩ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) = ∅ )
194 simpll ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ) → 𝜑 )
195 iunss1 ( 𝑏𝐴 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ⊆ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
196 147 195 syl ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ⊆ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
197 196 sselda ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ) → 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
198 nfv 𝑗 𝜑
199 nfiu1 𝑗 𝑗𝐴 ( { 𝑗 } × 𝐵 )
200 199 nfcri 𝑗 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 )
201 198 200 nfan 𝑗 ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
202 nfv 𝑘 ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
203 nfcv 𝑘 ( 0 [,] +∞ )
204 1 203 nfel 𝑘 𝐹 ∈ ( 0 [,] +∞ )
205 2 adantl ( ( ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) ∧ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) → 𝐹 = 𝐶 )
206 simp-5l ( ( ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) ∧ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) → 𝜑 )
207 simp-4r ( ( ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) ∧ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) → 𝑗𝐴 )
208 simplr ( ( ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) ∧ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) → 𝑘𝐵 )
209 206 207 208 5 syl12anc ( ( ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) ∧ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) → 𝐶 ∈ ( 0 [,] +∞ ) )
210 205 209 eqeltrd ( ( ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘𝐵 ) ∧ 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) → 𝐹 ∈ ( 0 [,] +∞ ) )
211 elsnxp ( 𝑗𝐴 → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘𝐵 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ ) )
212 211 biimpa ( ( 𝑗𝐴𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘𝐵 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ )
213 212 adantll ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘𝐵 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ )
214 202 204 210 213 r19.29af2 ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) )
215 simpr ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
216 eliun ( 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
217 215 216 sylib ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑗𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
218 201 214 217 r19.29af ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) )
219 194 197 218 syl2anc ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) )
220 simpll ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) → 𝜑 )
221 nfcv 𝑗 𝐴
222 nfcv 𝑗 𝑙
223 221 222 162 164 ssiun2sf ( 𝑙𝐴 → ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ⊆ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
224 43 223 syl ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ⊆ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
225 224 sselda ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) → 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
226 220 225 218 syl2anc ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) )
227 171 172 173 180 182 193 219 226 esumsplit ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑧 ∈ ( 𝑗𝑏 ( { 𝑗 } × 𝐵 ) ∪ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) ) 𝐹 = ( Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 ) )
228 170 227 syl5eq ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = ( Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 ) )
229 228 adantr ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 = ( Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 +𝑒 Σ* 𝑧 ∈ ( { 𝑙 } × 𝑙 / 𝑗 𝐵 ) 𝐹 ) )
230 135 160 229 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) ∧ Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 ) → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 )
231 230 ex ( ( 𝜑 ∧ ( 𝑏𝐴𝑙 ∈ ( 𝐴𝑏 ) ) ) → ( Σ* 𝑗𝑏 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝑏 ( { 𝑗 } × 𝐵 ) 𝐹 → Σ* 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗 ∈ ( 𝑏 ∪ { 𝑙 } ) ( { 𝑗 } × 𝐵 ) 𝐹 ) )
232 11 16 21 26 33 231 6 findcard2d ( 𝜑 → Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 )