| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1mptrn.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
| 2 |
|
f1mptrn.2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) |
| 3 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) |
| 4 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 6 |
5
|
f1ompt |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 –1-1-onto→ 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 7 |
|
dff1o2 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 –1-1-onto→ 𝐶 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ∧ Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐶 ) ) |
| 8 |
7
|
simp2bi |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 –1-1-onto→ 𝐶 → Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 9 |
6 8
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ ∀ 𝑦 ∈ 𝐶 ∃! 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) → Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 10 |
3 4 9
|
syl2anc |
⊢ ( 𝜑 → Fun ◡ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |